PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

PETERS INTERALCTIVE PAGES
USERS GUIOE

peterblum.com l

Start with better controls. Finish with better sites.

Click on any of these topics to jump to them:

¢ FieldStateController.........cccccvieeecevsemreeereeresseescmceneeenn. SING Adding Properties

¢ MultiFieldStateController.uvcvcciveereeeeessesssssssmsmsnseenns USING Adding Properties

¢ FESCONCOMMANG.........ccooimiiereeeecmmreeeeeeeeeeeeencmceneeene. ISING Adding Properties

¢ MUltiESCONCommMand.............cccccveereerreerereecmceneennn. USING Adding Properties

¢ CalculationController...........ccoceeecevsemreeereereseecmceneennn. SING Adding Properties
® NumericTextBoxCalcltem ConstantCalcltem ListConstantCalcltem CheckStateCalcltem
e ConditionCalcltem ParenthesisCalcltem CalcControllerCalcltem TotalingCalcltem

¢ TextCounter CONtrol............cceceeecevmmecreeereereseecmceneennn. USING Adding Properties

¢ CONEXIMENU,eeecieeeccceeeeenneee e snmeeeeneemeeeeesmenes ISING Adding Properties

¢ DropDOWNMENU........ueececieerereerecmmeereeeseeressescmcemeeeees SSING Adding Properties

¢ Interactive HintS........eeececieieescercceecr e ee e s cmcemeeenn. ISING Adding PopupViews Adding On Page

® & & o o
(@)
=0
Q
>
Q
(0]
<
o
=)
=
o
=
[
]
>
(o]
g
Q
®
-
(9]
<
o
o
o
e}
0]
=
[¢]
(]
o8}
c
=
o
]
o
=
o
©
]
—
s
(]

—
®
Q
=
]
o
=
s
@

® & o
5
<
Q
wn
o
=.
el
—
(7))
5
o]
o
pm
T
c
=
o
=3
o
S
7]

This document includes information for the Peter’s Interactive Pages module in Peter’s Data Entry Suite. If you licensed the
complete Suite or the “Peter’s Interactive Pages” module, you have all features found in this User’s Guide, unless otherwise
noted.

Note: The FieldStateController and MultiFieldStateController work best when they have access to the Condition objects that
are part of the Peter’s Professional Validation module.

The CalculationController works best when it has access to the TextBoxes that are part of the Peter’s TextBoxes module.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 1 of 309

http://www.peterblum.com/des/support.aspx�
http://learningdes.peterblum.com/InteractivePages/Menu.aspx�
http://learningdes.peterblum.com/InteractivePages/Menu.aspx�
http://learningdes.peterblum.com/InteractivePages/Menu.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Peter’s Interactive Pages Overview

Peter’s Data Entry Suite (“DES”) focuses on enhancing data entry on your ASP.NET web forms. When you build desktop
(Windows, Mac, Linux, etc) applications, the operating systems provide an interactive graphical user interface, making it
easy to assist the user. HTML has a very limited set of behaviors described in its tags. For example, while it’s easy to set
focus to the first textbox in a Windows application, there is no HTML equivalent.

JavaScript and the document object models specified by the W3C (called “DOM?”) and Microsoft (called “DHTML”)
overcomes some of HTML’s deficiencies. DES packages many of the techniques, so that you don’t have to figure them out (a
task made more difficult by the differences between DHTML, DOM, and each browser’s implementation of them).

The Peter’s Interactive Pages uses JavaScript to enhance how the web form interacts with the user and assist them with
their data entry.

e When loading the page:
0 Setting focus to a field
0 Using the FieldStateControllers to prepare the look of a page
0 Use the ChangeMonitor to disable buttons until an edit occurs
e When the user edits the page:

0 The FieldStateControllers monitor edits and update the appearance of other controls, such as enabling them,
making them visible, or changing their style.

The CalculationController calculates and updates values as the user changes numbers in textboxes.
The Interactive Hints system showing hints as the user puts focus in a data entry field

The Enhanced ToolTips replaces the browser’s tooltip with an HTML-driven popup.

The TextCounter tells the user how close they are to the maximum size of a textbox.

The ChangeMonitor enables buttons after an edit occurs.

O O O O O O

The ContextMenu lets you offer a right click menu with your own commands

0 The DropDownMenu offers a menu of commands available by clicking a button or label.
e When submitting a page:

0 Prompting the user to confirm before submitting

0 Direct the ENTER key to click a button

o Disable the submit buttons as the page is submitted

Click on any of these topics to jump to them:

FieldStateControllers Overview

¢ & 6 6 6 0 0 0 0
0
=0
Q
=}
2
@D
<
o
=
3
O
<
D
<.
@D
s

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 2 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

FieldStateControllers Overview

The four FieldStateController controls make changes to the HTML elements on your page. They can change almost any
element on your page: visibility, enabled state, readonly state, the value, and more.

There are two types of FieldStateControllers: those that apply a single field state and those that apply one of two field states,
based on a Condition.

The FSCOnCommand and MultiFSCOnCommand are invoked by a click on a “command” such as a button and apply a
single field state. Any HTML tag that supports the “onclick” event can be used to fire it. Examples:

e You have a CheckBoxList and use a button titled “Select All” to mark all checkboxes.

e Inatabbed interface, an image that represents a “tab” can show or hide a panel containing the tab’s “page”

two purposes:

o It monitors the controls assigned to the ControllDToEvaluate and SecondControllDToEvaluate properties of the
Condition. When they are changed or clicked (for non-data entry fields), it invokes the FieldStateController.

e It selects which of the two field states to apply, based on whether the Condition evaluates as “success” or “failed”.

CheckStateCondition to monitor a checkbox and a RequiredTextCondition to monitor a textbox.

Once the FieldStateControllers have done their task, they can optionally run the Validators on the field whose state was
changed or run an entire validation group.

See “FieldStateController and MultiFieldStateController” and “FSCOnCommand and MultiFSCOnCommand”.

CalculationController Overview

The CalculationController lets you describe calculations that involve numbers in textboxes, constants and other logic. Using
javascript, it interactively calculates and updates its result as the user edits the page. The values from these calculations can
be used in the following ways:

e Displayed on the page, whether in a Label or a textbox.

e Validators that compare numbers can evaluate the value simply by setting their ControllDToEvaluate property to this
control’s ID. Supported validators include: CompareToValueValidator, CompareTwoFieldsValidator, RangeValidator,
and DifferenceValidator. In addition, the RequiredTextValidator can determine if the calculation had an error.

Conditions. Now those Conditions can enable their control based on the result of a calculation.

See “CalculationController”.

TextCounter Overview

The TextCounter control displays the number of characters or words within a textbox. It assists users when there are limits to
the size of text they can enter. It compliments, but does not replace the TextLengthValidator/WordCountValidator, because it
does not impose a limit. It merely communicates the count and if a limit is exceeded.

The user interface of the TextCounter can be like an interactive label control. It also can present itself in the Hint feature of
DES TextBoxes.

See “TextCounter Control”

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 3 of 309

http://www.peterblum.com/des/support.aspx�
http://learningdes.peterblum.com/InteractivePages/Menu.aspx?Topic=FSC�
http://learningdes.peterblum.com/InteractivePages/Menu.aspx?Topic=Calc�
http://learningdes.peterblum.com/InteractivePages/Menu.aspx?Topic=TextCounter�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

ContextMenu and DropDownMenu Overview

The ContextMenu is a client side menu that is the basis for the context and help menus in the Peter’s Date and Time controls.
It is designed to look like a browser’s context menu with gaps on both sides, a column with the command name, a column
with keystroke for that command, and a frame around it. When the mouse passes over rows, the row is highlighted. When the
user clicks on a row, your client side script is run. It can appear open full time or be hooked up to one or more objects on the
page to popup on your choice of left or right mouse clicks.

The DropDownMenu attaches the ContextMenu to a button or label. The user clicks the button to see the Menu.

ChangeMonitor Overview

The ChangeMonitor watches for edits in the form and changes the appearance of buttons and other fields upon the first
detected edit.

The classic case is to have a disabled OK button that gets enabled as you start typing. Another case is to show a message like
“This form has changed” in a label. Both of these cases are handled.

DES’s enhanced buttons are already capable of showing a confirmation message. With the ChangeMonitor in use, that
message can be shown based on whether or not the user has edited the form.

Interactive Hints Overview

As users work with textboxes, there are fields that require specific entries. Perhaps they require a pattern (like a date is
day/month/year) or they have limits (“Keep values between 1 and 5”). Web pages often communicate this information by
adding a label on the page, near the field. The label is always present, taking up valuable screen real estate.

The Interactive Hint allows a “PopupView” or label to show a message for the field currently with focus. When using labels,
as the user tabs around, the text changes or completely disappears. This allows for much better screen usage.

This feature also puts the hint in the browser’s status bar and the control’s tooltip. It optionally can include a validation error
in the hint. This gives the user the error as they tab into the field.

See “Interactive Hints”.

Enhanced ToolTips Overview

The browser provides the ToolTip to describe almost any field as the mouse passes over it. That tooltip is very limited. For
most browsers, it cannot be multiline. It has one style (yellow). It cannot support HTML.

Using the same PopupView feature found in Interactive Hints and the DES Validator’s PopupErrorFormatter, DES gives you
a better tooltip. You control its appearance and supply it with HTML to convey the information better.

Enhanced Buttons Overview

DES provides replacements for the native Button, LinkButton and ImageButton controls. While it needs to do this to invoke
its validation as the page is submitted, there are many ways to enhance buttons using javascript.

The DES buttons provide these enhancements:

e Use the ConfirmMessage property to display a confirmation message. If the user answers No to the prompt, it will
prevent the postback. Combined with the ChangeMonitor and the ChangeMonitorUsesConfirm property, you can have
the message shown only after an edit occurred.

e Use the ChangeMonitorEnables property to determine when the button is enabled as the ChangeMonitor determines
the page has been edited. When setup, the button is disabled as the page is loaded.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 4 of 309

http://www.peterblum.com/des/support.aspx�
http://learningdes.peterblum.com/InteractivePages/Menu.aspx?Topic=Menu�
http://learningdes.peterblum.com/InteractivePages/Menu.aspx?Topic=ChangeMonitor�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

e Use the DisableOnSubmit property to disable the button after the user clicks, to limit the chance of a double
submission.

e Use the MayMoveOnClick property when validation is causing the user to click the button twice before it will submit.
The button is actually moving after the first click because validation is removing its error messages causing the page to
reposition its contents. This property does not require any license.

e Built in support for “Interactive Hints” and “Enhanced ToolTips”.

e When using the DES Validation Framework, validation groups support special tokens to match to all groups (“*”) and
assign group names based on their naming container (“+”). With the SkipPostBackEventsWhenlnvalid property, they
can skip calling your Click and Command event handler methods if validation errors are detected.

e ImageButtons will actually dim (using style sheet opacity) when disabled by the ChangeMonitor, DisableOnSubmit
property, or the FieldStateController.

e LinkButtons normally show the contents of their href= attribute, which is javascript code, in the browser’s status bar.
Unless prevented by the browser, DES’s LinkButtons will hide the script from the status bar. If you have a tooltip
assigned, its text is used as a replacement.

The DES buttons are direct subclasses of the native buttons, making it very easy to switch to them.

See “Enhanced Buttons”.

Direct Keystrokes to Click Buttons Overview

DES’s TextBoxes and the MultiSegmentDataEntry control offer the EnterSubmitsControlID property, which lets you direct
the ENTER key to click a specific button or control. It’s useful when you have several Submit buttons on the page, each with
their own task.

Additional, the PeterBlum.DES.Globals.WebFormDirector.RegisterKeyClicksControl () lets you
attach this capability to any control. This method has several advantages:

o Itallows you to define the keystroke that clicks the button. For example, ESC can hit a “Cancel” button.

e Instead of setting it up for individual controls, you can set it up for a group of controls by attaching this to a container
control, like a Panel or Table. The browsers are designed to let the onkeypress event, used here, to “bubble up” until
consumed (which is what the container will do).

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 5 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

FieldStateController and MultiFieldStateController Controls

The FieldStateController and MultiFieldStateController controls provide an interactive client-side interface by monitoring
user actions on fields and changing the attributes and styles of other controls on the page. For example, when the user clicks a
checkbox, show a previously hidden <div>. The FieldStateControllers often eliminate the effort to build the browser-
independent JavaScript required to monitor events, look at field data, and change attributes and styles.

These controls do most of their work on the client-side. If the browser does not support the client-side scripting needed to run
a FieldStateController, it is disabled. That will leave your controls with the state that you define in their properties on the
server side.

The FieldStateController adds no HTML to your page as it does it work through JavaScript. You can add them anywhere to
your web form.

Click on any of these topics to jump to them:
¢

Features

® The Condition

® Controls that run the FieldStateController

e Controls To Change

® JavaScript: Running FieldStateControllers on_ demand

e Controls That Have Child Controls

> & & & o o
>
o
=
=}
«Q
=
(]
<
=
T
@
Q.
)
2
D
0
o
=
S
o
0
o
=1
S

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 6 of 309

http://www.peterblum.com/des/support.aspx�
http://learningdes.peterblum.com/InteractivePages/Menu.aspx?Topic=FSC�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Features

The FieldStateController and MultiStateController controls make changes to the HTML elements on your page. They can
change almost any element on your page:

e Show or hide

e Enable or disable form controls (textboxes, lists, buttons, etc)

e Change the ReadOnly state of a textbox

e Change the style sheet class name, which can deliver an entirely different appearance through style sheets
e Change the textual value of a textbox

e Change the value of the selected element in a listbox or dropdownlist

e Change the “innerHTML” of a Label, , or any other HTML tag that supports “innerHTML”

e Change the URL associated with hyperlinks, images and other HTML tags that have an href= or src= attribute.
e Change the mark in a checkbox or radiobutton

e Mark or unmark all checkboxes in a CheckBoxL.ist

e Change the value of any document object model attribute that has a datatype of string, boolean or integer
e Change the value of any document object model style

e Run your own JavaScript to handle special situations

You can see how powerful these controls are. You only need to set properties on the controls and you have enhanced your
user interface.

two purposes:

e It monitors the controls assigned to the ControllDToEvaluate and SecondControllDToEvaluate properties of the
Condition. When they are changed or clicked (for non-data entry fields), it invokes the FieldStateController.

o It selects which of the two field states to apply, based on whether the Condition evaluates as “success” or “failed”.

They can use the extensive list of Conditions from DES’s Validators. For example, you set it up to use the
CheckStateCondition to monitor a checkbox and a RequiredTextCondition to monitor a textbox.

The FieldStateController and MultiFieldStateController initialize the look of the page by running the Condition and applying
the appropriate field state. This way, the page has the correct look and you don’t have to write any code on the server side to
establish the initial appearance.

Once the FieldStateControllers have done their task, they can optionally run the Validators on the field whose state was
changed or run an entire validation group.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 7 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Using the FieldStateControllers

There are four elements that always must be set up on a FieldStateController:

e A Condition object determines what control to monitor and selects between two sets of state settings. See “The

e The controls that run the FieldStateController when clicked or changed
e The control or controls whose attributes that you want to change

e The attribute values that will change

Click on any of these topics to jump to them:
¢

The Condition

® & & o
=
%
=4
o
<
=)
c
®
(%2
_|
o
(@)
=0
B
>
@
o

® & & o o
—
o)
«Q
Qo
=3
(@)
(%)
=4
9]
7]

Y Online examples

The Condition
A Condition object evaluates something on the page and determines if it indicates “success”, “failure”, or “cannot be

such as textboxes, lists, and checkboxes. The FieldStateController changes one or more attributes of other controls based on
whether the Condition indicates “success” or “failure”.

FieldStateControllers use the same Condition objects as Validators. This can be any Condition class including the
MultiCondition used to build Boolean expressions. You can use the CustomCondition to create your own rules as well. If you
do, you must create client-side code for your Condition as the FieldStateController does most of its work on the client-side.

Note: FieldStateControllers are easier to set up when you have a license for the Peter’s Professional Validation module.
Otherwise, you are limited to creating your own Condition code using the CustomController class and using any of the Non-
Data Entry Conditions. Both are described in the Validation User’s Guide but do not require a license for any Validators
module.

<des:FieldStateController id="FSC1" runat="server" properties>
<ConditionContainer>
<des:ConditionClass properties>
</ConditionContainer>
</des:FieldStateController>

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 8 of 309

http://www.peterblum.com/des/support.aspx�
http://learningdes.peterblum.com/InteractivePages/Menu.aspx?Topic=FSC�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Controls that run the FieldStateController

the ControlIDToEvaluate or SecondControlIDToEvaluate properties. If you want to let the user click on a non-data entry
field, like a label, button, or image, to run the FieldStateController, add the desired control to the

EvaluateOnClickOrChange property to false on each Condition.

By default, the FieldStateController evaluates after focus leaves the textbox, list, or dropdownlist. Sometimes you want it to
evaluate as the user types. For example, a FieldStateController that displays another field so long as a textbox has text might

behavior.

The FieldStateControllers run as the page is first loaded into the browser. This establishes an initial appearance based on the
Condition at the time. You do not have to establish the state yourself. For example, if a <div> should be invisible initially,

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 9 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Controls To Change
You must assign the ID or an object reference to the control(s) that you want to change. The FieldStateController control

object reference.

The MultiFieldStateController changes as many controls as you want. Add
PeterBIum.DES.Web.WebControIs.FSAControIConnectionckwscanbe&%iﬁé&éﬁiaiaﬁgébnnoHD
property and an object reference to its Controllnstance property.

Note: All controls must have an ID and runat=server property.

<des:FieldStateController id="FSCl1l" runat="server' ControlIDToChange="1D"
Other properties >
<ConditionContainer>
<des:ConditionClass properties >
</ConditionContainer>
</des:FieldStateController>

<des:MultiFieldStateController 1d="MFSC1" runat="server"™ properties>
<ControlConnections>
<des:FSAControlConnection ControlID="I1D1" />
<des:FSAControlConnection ControlID="1D2" />
</ControlConnections>

<ConditionContainer>
<des:ConditionClass properties>
</ConditionContainer>
</des:MultiFieldStateController>

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 10 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Attribute Values To Change
You can change any of these attributes:

o Visibility — changes the style:visibility and style:display attributes. For a special situation, see “Changing_Visibility on a

e Enabled - changes the disabled attribute on the controls that support it (which varies by browser)
e ReadOnly - changes the readOnly attribute on textboxes

e CssClass — changes the style sheet class name

¢ FieldValue - changes the value attribute of <input>, <textarea>, and <select> tags

e InnerHTML - changes the innerHTML attribute on any control. InnerHTML is found in tags that permit contents
between their begin and end tags, like this: <tag>innerHTML</tag>. A Label, Panel, and TableCell are web
controls that generate tags that support InnerHTML (, <div>, and <td> respectively.)

e URL - changes the href or src attribute to a new URL on , <input type=image>, <frame>, <iframe>,
and <a> tags.

e Checked — changes the checked attribute on a checkbox or radiobutton

o If you know the name and legal values of an attribute or style, there is an all-purpose property, Other, which will modify

applies the ConditionTrue attributes; when it evaluates as “failed”, it applies the ConditionFalse attributes. A change is
applied only when the attribute differs between ConditionTrue and ConditionFalse. For example, ConditionTrue.Visible

<des:FieldStateController i1d="FSC1" runat="server' ControllIDToChange=""1D"
ConditionFalse-AttributeName="value' Other properties >
<ConditionContainer>
<des:ConditionClass properties >
</ConditionContainer>
</des:FieldStateController>

<des:FieldStateController i1d="FSC1" runat="server' ControllIDToChange="TextBox1"
ConditionFalse-Visible="false" >
<ConditionContainer>
<des:CheckStateCondition ControlIDToEvaluate="CheckBox1" />
</ConditionContainer>
</des:FieldStateController>

<des:MultiFieldStateController id="MFSC1" runat="'server"
ConditionFalse-Enabled=""false" >
<ControlConnections>
<des:FSAControlConnection Control ID="TextBox1l" />
<des:FSAControlConnection Control ID="TextBox2" />
</ControlConnections>

<ConditionContainer>
<des:CheckStateCondition ControlIDToEvaluate="CheckBox1" />
</ConditionContainer>
</des:MultiFieldStateController>

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 11 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Extending the Attributes with Your Own Code

Sometimes you need to write your own code to change attributes. For example, you have a complex control that needs to hide
several related controls when it is hidden. You can write client- and server-side code to handle this.

Here are some of the cases to consider:

e Athird party custom control uses its own JavaScript to adjust its properties.

e The control is created by JavaScript on the client side and has no server-side ID.
e A calculation must be performed before the setting can be determined.

You assign your function to the ChangeStateFunctionName property.

Client-Side Function: The Change State Function
Create a client-side function in JavaScript and assign its name to the ChangeStateFunctionName property.

ALERT: Many users make the mistake of assigning JavaScript code to this property. This will cause JavaScript errors.
GOOD: “MyFunction”. BAD: “MyFunction();”” and ““alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of this property exactly matches the function definition.
Your function must take these three parameters in the order shown:

e An object reflecting this FieldStateController's properties on the client-side. It allows you to get properties like CssClass,
Enabled and Visible for use in your function. They are client-side properties on the object with these names:

o CT_Vis (Boolean) — ConditionTrue.Visible
CF_Vis (Boolean) — ConditionFalse.Visible
CT_Enab (Boolean) — ConditionTrue.Enabled
CF_Enab (Boolean) — ConditionFalse.Enabled
CT_RO (Boolean) — ConditionTrue.ReadOnly
CF_RO (Boolean) — ConditionFalse.ReadOnly
CT_Css (string) — ConditionTrue.CssClass
CF_Css (string) — ConditionFalse.CssClass
CT_Html (string) — ConditionTrue.InnerHTML
CF_Html (string) — ConditionFalse.InnerHTML
CT_URL (string) — ConditionTrue.URL
CF_URL (string) — ConditionFalse.URL
CT_Chk (Boolean) — ConditionTrue.Checked
CF_Chk (Boolean) — ConditionFalse.Checked
CT_Val (string) — ConditionTrue.FieldValue
CF_Val (string) — ConditionFalse.FieldValue

o0 InvPS (Boolean) — InvisiblePreservesSpace

O 0O O O o O o oo o o o o o o

e ControlToChange element reference — The element that is being operated upon. It is an object for the element. If you
need the object’s ID, this object has a property called id.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 12 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

This function will call a fictitious JavaScript function, TPF_SetVisibi lity (), which changes the visibility of the
control ID. It makes the control visible when the Condition indicates success.

function MyFSCFunction(DESObj, ControlToChange, ConditionValue)

TPF_SetVisibility(ControlToChange.id, ConditionValue);
}

Server Side Event Handler

The FieldStateController performs some of its state changes as the page is first created on the server side. If you write a
client-side function for the ChangeStateFunctionName property to use, use the StateChange event handler property to
attach an equivalent server side method. The StateChange property expects your method to match the
PeterBlum.DES._Web.WebControls.ChangeStateEventHandler delegate.

Note: The StateChange property only handles one event handler and must be assigned programmatically (it does not appear
in the Properties Editor.)

The ChangeStateEventHandler is defined here:
[C#]

public delegate void ChangeStateEventHandler(
PeterBlum.DES. IBaseFieldStateAction sender,
PeterBlum.DES.Web.WebControls.ChangeStateEventArgs args);

[VB]

Public Delegate Sub ChangeStateEventHandler(_
ByVal sender As PeterBlum.DES. IBaseFieldStateAction, _
ByVal args As PeterBlum.DES.Web._WebControls.ChangeStateEventArgs)

Parameters
sender

An internal representation of the FieldStateControllers. It contains the same properties but is of the interface
PeterBlum.DES. IBaseFieldStateAction. If you used the MultiFieldStateController, this represents a
single control to change and the event handler will be called once for each control to change.

args

The PeterBlum.DES.Web.WebControls.ChangeStateEventArgs class provides additional inputs that
are useful to your event handler. The ControlToChange property is reference to the control that is being changed.
Success is a Boolean where it indicates success of the Condition when true and failure when False.

[C#]

public class ChangeStateEventArgs : System.EventArgs

{
public Control ControlToChange { get; }

public bool Success { get; }
}

[VB]

Public Class ChangeStateEventArgs Inherits System.EventArgs
Public ReadOnly Property ControlToChange As Control
Public ReadOnly Property Success As Boolean

End Class

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 13 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Updating Validators
Sometimes a field hidden or disabled by the FieldStateController has an associated Validator whose error message is

Use the RevalidateOnly property to evaluate only validators that have previously been evaluated on the page. This prevents
validator errors from appearing further down the page, where the user has not edited.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 14 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Changing Visibility on a Complex Control
Some web controls include a number of HTML tags. The control’s ID property may refer to just one of the HTML tags it

generates. If you use the FieldStateController to show and hide that control by its ID, you will only show or hide the one tag
associated with the control ID.

Solution

Look at the HTML output of any web control to see which HTML tag is assigned the ID (specifically the ClientID property
value.) If that tag encloses all HTML for that control, you can use the web control’s ID with the
FieldStateController.ControllDToEvaluate property.

If the tag does not enclose the control, add a or <div> tag around the web control. Set the runat="'server""
property and assign an 1D value. Set the FieldStateController.ControlIDToEvaluate property to the ID of that or
<div> tag.

ALERT: DES’s own controls — including the DateTextBox - do not need the this technique as they automatically account for
the issue here. This is merely an example.

The textboxes in Peter’s Date And Time use multiple HTML tags. For example, the DateTextBox has an tag to the
right of the textbox which is used to toggle a popup calendar. The textbox in these controls is associated with the control’s
ID.

<input type="text® id="control_clientid" >

If you assign the ControlIDToChange property to the DateTextBox’s ID, it will only show and hide the textbox, leaving the
image visible.

Here’s the solution.

<des:DateTextBox runat="server"' id="DateTextBox1l' />

<des:FieldStateController runat="server"™ id="FSC1"
Control IDtoChange=""DateTextBox1lContainer™ ConditionTrue-Visible="true">
<Condition>
[you determine this]
</Condition>
</des:FieldStateController>

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 15 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Toggling States

You can easily set up a checkbox to show and hide other fields using the FieldStateController because the checkbox has a

toggle between two states such as when a particular field is invisible, toggle it to visible.

Suppose that you want to use a Button to show or hide another field each time it’s clicked. Here’s how you would set up a
FieldStateController to handle this case.
e Add the Button control to the ExtraControlsToRunThisAction collection.

e Assign the Condition property to the VisibilityCondition. Set its IsVisible property to true. Set its

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 16 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

JavaScript: Running FieldStateControllers on demand

When you add your own JavaScript on a page, you may change the state of the page. FieldStateControllers will not notice
your changes and the page may no longer be consistent with how you want it to work. DES provides the JavaScript function
DES_RunAIIFSC(Q) that runs all FieldStateControllers on the page whose RunOnPagelLoad property is true. Call the
function from within your JavaScript code.

You can set up your JavaScript in two ways:
1. Embed the function call DES_RunAl IFSC() into your code.
<script type="text/javascript® language="javascript™>
function ChangeMyFields()

// change some fields here
DES_RunAlIFSCQ); // let DES catch up

</script>

2. LetPeterBlum.DES.Globals.WebFormDirector.GetRunAllFSCScript() return a short script that
calls this function.

Buttonl._Attributes["onclick"] =
PeterBlum.DES.Globals.WebFormDirector.GetRunAlIFSCScript()

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 17 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Controls That Have Child Controls

The FieldStateControllers usually interact with a single HTML tag, such as a <input>, <table> or . Some web
controls, such as the RadioButtonList and CheckBoxL.ist, really do most of their work with child tags. For example, both the
RadioButtonList and CheckBoxList have unique <input type=radio]checkbox> tags for the buttons. When you use
the FieldStateController to change their state, you often want to modify the state of these controls. The FieldStateController
has an expandable mechanism to handle these kinds of web controls.

It automatically supports System.Web .Ul .WebControls.RadioButtonListand
System.Web.Ul .WebControls.CheckBoxList. You can provide a JavaScript function to handle the child controls
of other web controls.

This feature only updates these state settings on child controls:

e Visibility
e Enabled

e ReadOnly
e CssClass

e Checked (not recommended for RadioButtonLists)

GetChild Method

The GetChild method is a client-side function that is associated with a specific web control class and returns each child
control for the FieldStateController to use. You will define this function when you are using a custom control whose child
elements should change their visibility, enabled, read only, classname, or checked state settings.

has the following format:;
function FunctionName(plD, plndex, pMode)

return [a field based on Index and Mode or null];

}

Your function will be called with incrementing values of Index until you return nul I.
Parameters
pID (string)

The ClientlID assigned by the user to the control in the ControlIDToChange or ControlConnections property.
Your function will use this ID to create the ID of a child control. For example, the CheckBoxList uses pFieldID +
" "+ Index. See “Embedding the ClientID into your Script”.

pIndex (integer)

A value starting at O that selects a control, either the main control or one of its children. The method should locate a
specific child control matching that Index and return it. If the Index does not identify a child control, return nul I.
The FieldStateController starts with Index = 0 and increments it until nul I is returned. So do not return nul 1
unless the Index is beyond the range of available child controls.

pMode (integer)

Your function will also be used to attach onclick and onchange event handlers to validators that may use your
custom web control. This parameter determines if the FieldStateController or a validator calls your function. The
values are:

0 — Return all controls whose states should be modified by the FieldStateController.

1 — Return data entry oriented child controls. These will be set up with onclick and onchange event handlers.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 18 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Return value

A reference to a control or nul 1. Your method should create a FieldID based on the three parameters and pass it to
DES_GetByld(). That function returns the matching control reference or null

This is the function used by both the CheckBoxL.ist and RadioButtonL.ist web controls. Child controls have the format
FieldID_# where # is 0 and up.

function DES_GCCheckRadioList(plID, plndex, pMode)

{
var vID = "";
if (pMode == 0) // FSC needs the container (index 0)
// and the child controls (index 1 and up)
vID = plndex == 0 ? pID: pID + "_" + (pIndex - 1);
else
vID = FieldID + ™ " + plndex;
return DES GetByld(vID);
}

Installing the GetChild Method
You must map your GetChild method to the web control class in the custom.DES.config file. When DES sees a web
control that matches an entry in the custom.DES.config file, it installs the GetChild method.

1. Locate the <GetChi ldMethods> section of the custom.DES.config file.

2. Add anew <GetChi IdMethod> element. It has this format:

<GetChildMethod type="[full classname, qualified assembly name]"
method=""[methodname]"/>

As an example, here are the <GetChi ldMethod> definitions for CheckBoxList and RadioButtonList:

<GetChildMethod type="System.Web.Ul .WebControls.CheckBoxList, System.Web,
Version=2.0.50727.0, Culture=neutral, PublicKeyToken=b03f5f7fl11d50a3a""
method=""DES_GCCheckRadioList" />

<GetChildMethod type="System.Web.Ul _WebControls.RadioButtonList, System.Web,
Version=2.0.50727.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a""
method=""DES_GCCheckRadioList" />

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 19 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Example: FieldStateController

Suppose you have a checkbox that shows a Panel when the user marks it and hides the Panel when unmarked. The Panel
contains numerous textboxes representing an address.

Condition: The CheckStateCondition, which is designed to monitor the state of a checkbox and indicate success when the
mark matches the value you supply in the Checked property. Assign it to the Condition property.

Control That Runs This FieldStateController: The checkbox, assigned to the
CheckStateCondition.ControlIDToEvaluate property.

Control To Change: Assign the Panel control’s ID to ControlIDToChange.

Attributes to Change: When the Condition indicates “success”, ConditionTrue.Visible is true. When the Condition
indicates “failed”, ConditionFalse.Visible is false.

<p><asp:CheckBox id=""CheckBox1" runat="'server"
Text=""Alternate shipping address''></asp:CheckBox></p>
<p><asp:Panel id="Panell runat="server'>TextBoxes for an Address</asp:Panel></p>

<des:FieldStateController id="FieldStateControllerl"” runat="'server"
ConditionFalse-Visible="False" ControlIDToChange="Panell">
<ConditionContainer>
<des:CheckStateCondition ControlIDToEvaluate="CheckBox1" />
</ConditionContainer>
</des:FieldStateController>

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 20 of 309

http://www.peterblum.com/des/support.aspx�
http://www.peterblum.com/DES/DemoFSC.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Example: MultiFieldStateController

This is a modification of the previous example. Instead of having a Panel, you have TextBoxes whose Enabled state will be
changed as the checkbox is marked.

The differences from the previous example are:

e Use of the MultiFieldStateController

e Adding TextBoxes to the ControlConnections property

e Using the Enabled attribute instead of the Visible attribute on ConditionTrue and ConditionFalse.
e Textboxes replace the Panel

<p><asp:CheckBox id=""CheckBox1" runat="'server"

Text="Alternate shipping address'></asp:CheckBox></p>
<p><asp:TextBox id="AddressLinel"” runat="server'></asp:TextBox></p>
<p><asp:TextBox id="AddressLine2" runat="server'></asp:TextBox></p>
<p><asp:TextBox id="AddressLine3" runat="server''></asp:TextBox></p>

<des:MultiFieldStateController id="MultiFieldStateControllerl" runat="server"
ConditionFalse-Enabled=""False">
<ControlConnections>
<des:FSAControlConnection Control ID="AddressLinel></des:FSAControlConnection>
<des:FSAControlConnection Control ID="AddressLine2"></des:FSAControlConnection>
<des:FSAControlConnection Control ID=""AddressLine3"></des:FSAControlConnection>
</ControlConnections>

<ConditionContainer>
<des:CheckStateCondition ControllDToEvaluate="CheckBox1" />
</ConditionContainer>
</des:MultiFieldStateController>

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 21 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Adding the FieldStateController Control

These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View

2 command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. Prepare the page for DES controls. See “Preparing a page for DES controls” in the General Features Guide. It covers
issues like style sheets, AJAX, and localization.

2. Set up all the fields involved: the data entry controls that will toggle the state and the controls whose state will change.
Be sure that the controls whose state will change include an ID and runat=""server"" property.

Test your page without adding any FieldStateControllers. This is how your page will operate when the browser does not
have JavaScript available. Your users should be able to work with it in this state. Your server-side code should have its
logic set up correctly to know when controls should be avoided because they are supposed to be invisible or disabled.

3. Add the FieldStateController control to the page. Its location does not matter as it contributes no HTML to the page.

Drag the FieldStateController control from the Toolbox onto your web form. It will look like this:

Hg
m & FieldStateContrallert

Add the control (inside the <form> area):
<des:FieldStateController id="[YourControllD]" runat="'server" />

e Identify the control which you will add the FieldStateController control to its Controls collection. Like all
ASP.NET controls, the FieldStateController control can be added to any control that supports child controls, like
Panel, User Control, or TableCell. If you want to add it directly to the Page, first add a PlaceHolder and use the
PlaceHolder.

e Create an instance of the FieldStateController control class. The constructor takes no parameters.
e Assign the ID property.
e Add the FieldStateController control to the Controls collection.

In this example, the FieldStateController control is created with an ID of “FieldStateControllerl”. It is added to
PlaceHolder1.

[C#]

PeterBlum.DES.Web.WebControls.FieldStateController vFSC =
new PeterBlum.DES.Web.WebControls.FieldStateController();

VFSC.ID = "FieldStateControllerl™;

PlaceHolderl.Controls.Add(vFSC);

[VB]

Dim VFSC As PeterBlum.DES.Web.WebControls.FieldStateController = _
New PeterBlum._DES.Web.WebControls._FieldStateController()

VFSC.ID = "FieldStateControllerl"

PlaceHolderl.Controls.Add(vFSC)

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 22 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Guidelines for setting properties

e Design mode users can use the Properties Editor or the Expanded Properties Editor. (See “Expanded Properties
Editor” in the General Features Guide.) The SmartTag ™ also offers some of the most important properties.

e Text entry users should add the properties into the <des:ControlClass> tag in this format:
propertyname="value"

e When setting a property programmatically, have a reference to the control’s object and set the property according to
your language’s rules.

Note: You can use the Non-Data Entry Conditions, which monitor non-data oriented attributes of visibility, enabled,
readonly and more. When you do, you will need to establish a control to monitor in the ExtraControlsToRunThisAction

property.

The Properties Editor for the Condition property provides a window where you can select Condition objects and
establish their properties.

S
o-l Select a Condition for Condition -ﬁ

Required TextCondition -

Required ListCondition

Data TypeCheckCondition ControllDToEvaluate
CompareToValueCondition E E When to use

Compare TwoFieldsCondition Enabled

RangeCondition bl EvaluateOnClickOrChange

RegexCondition
Compare ToStingsCondition
CharacterCondtion

Check StateCondition
SelectedindexCondition
SelectedindexRangesCondition
TextLengthCondition

Checked
The state of a CheckBox or RadioButton's Checked property desired for a true
resulting condition.

Evaluates CheckBoxes and RadioButtons to determine
if the checked state matches the Checked property.

Select a different condition] [] [Cancel

[MNone] [0K l ’ Cancel]

e Select the Condition from the List and click OK.

o Establish the properties in the Properties grid.

e Click OK.

You add the Condition as child of the <ConditionContainer> tag (not <Condition>).

The following example represents a CheckStateCondition.
<des:FieldStateController id="FieldStateControllerl™ runat="server'>

<ConditionContainer>
<des:CheckStateCondition ControlIDToEvaluate="CheckBox1" />
</ConditionContainer>

</des:FieldStateController>

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 23 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Notice that the Condition property name never appears in the attributes of the <des:FieldStateController>
tag. (It will be added when using the Properties Editor but it’s completely meaningless.) Instead, the
<ConditionContainer> tag is a child of the FieldStateController control tag. That tag has no attributes. The child

namespace using the <% @REGISTER %> tag at the top of the page.

o [all properties] — Enter the properties into the tag the same way you do for any other control.

e Create an instance of the desired Condition class. There is a constructor that takes no parameters.

Note: There are also constructors that take parameters representing some of the control’s properties. Each demands
an ““owner” in the first parameter. That value must be the FieldStateController object.

e Assign property values.
e Assign the Condition object to the Condition property.
In this example, add the CheckStateCondition, which is checking the mark of CheckBox1, to FieldStateControllerl.
[C#]
PeterBlum.DES.Web._WebControls.CheckStateCondition vCond =
new PeterBlum.DES.Web.WebControls.CheckStateCondition();
vCond.ControlToEvaluate = CheckBox1;

vCond.Checked = true;
FieldStateControllerl.Condition = vCond;

[VB]

Dim vCond As PeterBlum.DES.Web.WebControls.CheckStateCondition = _
New PeterBlum.DES._Web._WebControls.CheckStateCondition()

vCond.ControlToEvaluate = CheckBox1l

vCond.Checked = True

FieldStateControllerl.Condition = vCond

6. Usually, the Conditions dictate which field runs the FieldStateController when the user clicks or edits the control
specified by the ControllDToEvaluate or SecondControllDToEvaluate properties. If you want to let the user click on
a non-data entry field, like a label, button, or image, to run the FieldStateController, add the desired control to the

Data Entry Condition. When ExtraControlsToRunThisAction is used, consider setting the EvaluateOnClickOrChange
property to false on each condition.

properties. ConditionTrue will be used when the Condition evaluates as “success”. ConditionFalse will be used when
the Condition evaluates as “failed”.

The ControlIDToChange will change its settings when the attribute differs between ConditionTrue and
ConditionFalse. For example, ConditionTrue.Visible must differ from ConditionFalse.Visible for a visibility change
to occur.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 24 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

The properties contained in ConditionTrue and ConditionFalse are added directly to the
<des:FieldStateController> tag. Use this format: <des:FieldStateController ConditionTrue-
propertyname="‘value'" ConditionFalse-propertyname="value'>. For example:

<des:FieldStateController id="FieldStateControllerl”™ runat="'server"
ConditionFalse-Visible="False'>

9. Sometimes a field hidden or disabled by the FieldStateController has an associated Validator whose error message is

10. Here are some other considerations:

o If you are using an AJAX system to update this control, set the INAJAXUpdate property to true. Also make sure
the PageManager control or AJAXManager object has been setup for AJAX. See “Using these Controls With
AJAX” in the General Features Guide. Failure to follow these directions can result in incorrect behavior and
javascript errors.

e This control does not preserve most of its properties in the ViewState, to limit its impact on the page. If you need to
use the ViewState to retain the value of a property, see “The ViewState and Preserving Properties for PostBack” in
the General Features Guide.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 25 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Adding the MultiFieldStateController Control

0 Q

1.

These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

Prepare the page for DES controls. See “Preparing a page for DES controls” in the General Features Guide. It covers
issues like style sheets, AJAX, and localization.

Start by setting up all the fields involved: the data entry controls that will toggle the state and the controls whose state
will change. Be sure that the controls whose state will change include an ID and runat=""server"" property.

Test your page without adding any MultiFieldStateControllers. This is how your page will operate when the browser
does not have JavaScript available. Your users should be able to work with it in this state. Your server-side code should
have its logic set up correctly to know when fields should be avoided because they are supposed to be invisible or
disabled.

Add the MultiFieldStateController control to the page. Its location does not matter as it contributes no HTML to the
page.

Drag the MultiFieldStateController control from the Toolbox onto your web form. It will look like this:

Egy
@& MultiFieldstateController

Add the control (inside the <form> area):
<des:MultiFieldStateController id="[YourControllD]" runat="server" />

e Identify the control which you will add the MultiFieldStateController control to its Controls collection. Like all
ASP.NET controls, the MultiFieldStateController control can be added to any control that supports child controls,
like Panel, User Control, or TableCell. If you want to add it directly to the Page, first add a PlaceHolder and use the
PlaceHolder.

e Create an instance of the MultiFieldStateController control class. The constructor takes no parameters.
e Assign the ID property.
e Add the MultiFieldStateController control to the Controls collection.

In this example, the MultiFieldStateController control is created with an ID of “MultiFieldStateController1”. It is added
to PlaceHolder1.

[C#]

PeterBlum.DES.Web._WebControls_MultiFieldStateController VMFSC =
new PeterBlum.DES.Web.WebControls.MultiFieldStateController();

VMFSC.ID = "MultiFieldStateControllerl";

PlaceHolderl.Controls.Add(vMFSC);

[VB]

Dim vMFSC As PeterBlum.DES.Web._.WebControls.MultiFieldStateController = _
New PeterBlum._.DES._Web.WebControls_MultiFieldStateController()

VMFSC.ID = "MultiFieldStateControllerl"

PlaceHolderl.Controls.Add(vMFSC)

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 26 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Guidelines for setting properties
e Design mode users can use the Properties Editor or the Expanded Properties Editor. (See “Expanded Properties
Editor” in the General Features Guide.) The SmartTag ™ also offers some of the most important properties.

e Text entry users should add the properties into the <des:ControlClass> tag in this format:
propertyname="value"

e When setting a property programmatically, have a reference to the control’s object and set the property according to
your language’s rules.

CustomCondition class. See “About Conditions” in the Validation User’s Guide to choose a class.

Note: You can use the Non-Data Entry Conditions, which monitor non-data oriented attributes of visibility, enabled,
readonly and more. When you do, you will need to establish a control to monitor in the ExtraControlsToRunThisAction
property.

The Properties Editor for the Condition property provides a window where you can select Condition objects and
establish their properties.

S
o- Select a Condition for Condition -ﬁ

Required TextCondition -
RequiredListCondition ‘

DataTypeCheckCondition Control DToEvaluate

Compare ToValueCondition E When to use

Compare TwoFieldsCondition Enabled

RangeCondition = "
RegexCondition EvaluateOnClickOrChange
Compare ToStringsCondition

CharacterCondition

Check StateCondition

SelectedIindexCondition

SelectedIindexRangesCondition

TextLengthCondition 2

m

Checked
The state of a CheckBox or RadioButton's Checked property desired for a true
resulting condition.

Evaluates CheckBoxes and RadioButtons to detemine
if the checked state matches the Checked property.

’ None] [QK l [Cancel] Select a different condition] [] [Cancel

e Select the Condition from the List and click OK.
e Establish the properties in the Properties grid.
e Click OK.

You add the Condition as child of the <ConditionContainer> tag.
The following example represents a CheckStateCondition.
<des:MultiFieldStateController id="MultiFieldStateControllerl” runat="server'>

<ConditionContainer>
<des:CheckStateCondition ControlIDToEvaluate="CheckBox1" />
</ConditionContainer>

</des:MultiFieldStateController>

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 27 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Notice that the Condition property never appears in the attributes of the <des:MultiFieldStateController>
tag. (It will be added when using the Properties Editor but it’s completely meaningless.) Instead, the
<ConditionContainer> tag is a child of the FieldStateController control tag. That tag has no attributes. The child
to <ConditionContainer> defines the class and all properties of the Condition:

<des:classname[all properties] />

namespace using the <% @REGISTER %> tag at the top of the page.

o [all properties] — Enter the properties into the tag the same way you do for any other control.

Here are the steps to set the Condition.
e Create an instance of the desired Condition. There is a constructor that takes no parameters.

Note: There are also constructors that take parameters representing some of the control’s properties. Each demands
an ““owner” in the first parameter. That value must be the FieldStateController object.

e Assign property values.
e Assign the Condition object to the Condition property.
In this example, add the CheckStateCondition, which is checking the mark of CheckBox1, to FieldStateControllerl.
[C#]
PeterBlum.DES.Web._WebControls.CheckStateCondition vCond =
new PeterBlum.DES.Web.WebControls.CheckStateCondition();
vCond.ControlToEvaluate = CheckBox1;

vCond.Checked = true;
FieldStateControllerl.Condition = vCond;

[VB]

Dim vCond As PeterBlum.DES.Web.WebControls.CheckStateCondition = _
New PeterBlum.DES.Web._WebControls.CheckStateCondition()

vCond.ControlToEvaluate = CheckBox1l

vCond.Checked = True

FieldStateControllerl.Condition = vCond

6. Usually, the Conditions dictate which field runs the FieldStateController when the user clicks or edits the control
specified by the ControllDToEvaluate or SecondControlIDToEvaluate properties. If you want to let the user click on
a non-data entry field, like a label, button, or image, to run the FieldStateController, add the desired control to the

Data Entry Condition. When ExtraControlsToRunThisAction is used, consider setting the EvaluateOnClickOrChange
property to false on each condition.

PeterBlum.DES.Web.WebControls.FSAControlConnection objects. Assign the ID of the control to the
ControllD property or a reference to the control in the Controllnstance property. Controllnstance can only be assigned
programmatically.

The Properties Editor for the ControlConnections property provides a window where add
PeterBlum.DES.Web.WebControls.FSAControlConnection objects and assign the ControlID property to
the ID of the control.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 28 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

FSAControlConnection’l Collection Editor @Ii—hj
Members: AddressLinel properties:
] AddressLinel =
; :Sjresstmei ! 4 Behavior
rEssHne - ControllD Addresslinel
ControllD
The ID to the control that you are
Add] ’ Remove referencing.
[0K] [Cancel]

ControlConnections is a type of collection. Therefore its ASP.NET Markup is nested as a series of
PeterBlum.DES.Web.WebControls.FSAControlConnection objects within the
<ControlConnections> tag. Each PeterBlum_.DES.Web_.WebControls.FSAControlConnectionisa
tag with <des :FSAControlConnection> followed by the ControlID property.

The following example represents the same ControlConnections shown in the editor window above.

<des:MultiFieldStateController id="MultiFieldStateControllerl" runat="server'>

<ControlConnections>
<des:FSAControlConnection ControlID="AddressLinel">
</des:FSAControlConnection>
<des:FSAControlConnection ControlID="AddressLine2">
</des:FSAControlConnection>
<des:FSAControlConnection Control ID="AddressLine3">
</des:FSAControlConnection>

</ControlConnections>

</des:MultiFieldStateController>

Use the Add () method on the ControlConnections property. Pass the 1D, reference to the control, or

PeterBlum.DES.Web.WebControls.FSAControlConnection object. In this example, “AddressLinel” is an

ID to a control and AddressLine2 is a reference to the control object.

[C#]
MultiFieldStateControllerl.ControlConnections.Add("'AddressLinel™);

MultiFieldStateControllerl._ControlConnections.Add(AddressLine2);
[VB]

MultiFieldStateControllerl._ControlConnections.Add("'AddressLinel'™)

MultiFieldStateControllerl._ControlConnections.Add(AddressLine2)

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 29 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

8.

properties. ConditionTrue will be used when the Condition evaluates as “success”. ConditionFalse will be used when
the Condition evaluates as “failed”.

The controls in ControlConnections will change their settings when the attribute differs between ConditionTrue and
ConditionFalse. For example, ConditionTrue.Visible must differ from ConditionFalse.Visible for a visibility change
to occur.

The properties contained in ConditionTrue and ConditionFalse are added directly to the
<des:MultiFieldStateControl ler> tag. Use this format: <des:MultiFieldStateController
ConditionTrue-propertyname="value"™ ConditionFalse-propertyname="value'>. For example:

<des:MultiFieldStateController id="MultiFieldStateControllerl"” runat="'server"
ConditionFalse-Visible="False">

Sometimes a field hidden or disabled by the MultiFieldStateController has an associated Validator whose error message

10. Here are some other considerations:

e Ifyou are using an AJAX system to update this control, set the INAJAXUpdate property to true. Also make sure
the PageManager control or AJAXManager object has been setup for AJAX. See “Using these Controls With
AJAX” in the General Features Guide. Failure to follow these directions can result in incorrect behavior and
javascript errors.

e This control does not preserve most of its properties in the ViewState, to limit its impact on the page. If you need to
use the ViewState to retain the value of a property, see “The ViewState and Preserving Properties for PostBack” in
the General Features Guide.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 30 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES

A moouLe oF PETERS OATA ENTRY SUITEVS

Properties of FieldStateController And MultiFieldStateController

4 Invoke the Change Properties

¢ Controls To Change Properties

¢ Attributes To Change Properties

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved

Page 31 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Invoke the Change Properties
The Properties Editor shows these properties in the “Invokes The Change” category.

ControlIDToEvaluate or rules of the condition. When ControlIDToEvaluate is forgotten, expect to get a runtime
error.

ExtraControlsToRunThisAction (PeterBlum.DES.Connections) — Identifies additional controls and elements on the
page that run this FieldStateController when clicked or changed.

The Condition already identifies controls through its ControlIDToEvaluate and SecondControlIDToEvaluate
properties so this is rarely needed. The most common usages are:

o If you want the user to click on a non-data field, like a label, image, or button, use this property.

onclick event when the button is clicked. It doesn’t run when clicking another radiobutton unmarks the
radiobutton specified in ControllDToEvaluate. Assign the other radiobuttons to this property.

o If your CustomCondition uses controls that are not specified by ControlIDToEvaluate and
SecondControllIDToEvaluate, add those controls to this property.

This property is a collection of PeterBlum.DES.Web _WebControls.ControlConnection objects. You can
assign the control’s ID to the ControlConnection.ControllD property or a reference to the control in the
ControlConnection.ControlInstance property. When using the ControlID property, the control must be in the same or
an ancestor naming container. If it is in another naming container, use Controllnstance.

Here are some considerations:
0 Be sure that the control assigned to this collection has the runat=""server"’ property.

0 You may want to disable the Conditions from setting up other fields from running the FieldStateController by
setting the Condition.EvaluateOnClickOrChange property to false. For example, if your Condition
evaluates a checkbox with the CheckBoxCondition, by default, CheckBoxCondition will run the
FieldStateController whenever the checkbox is clicked.

ExtraControlsToRunThisAction is a type of collection. Therefore its ASP.NET Markup is nested as a series of child
controls within the <ExtraControlsToRunThisAction> tag. Here is an example.

<des:FieldStateController id="FieldStateControllerl"” runat="server'>

<ExtraControlsToRunThisAction>
<des:ControlConnection Control ID="TextBoxl1" />
<des:ControlConnection ControllD="Labell" />

</ExtraControlsToRunThisAction>

</des:FieldStateController>

Use the ExtraControlsToRunThisAction.Add() method to add an entry. This overloaded method takes one
parameter. Choose from the following:

e A reference to the control itself. This is the preferred form.
e Astring giving the ID of the control. Do not use this when the control is not in the same naming container.

e Aninstance of the class PeterBlum.DES.Web .WebControls.ControlConnection.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 32 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

This example shows how to update an existing PeterBlum.DES.Web.WebControls.ControlConnection
and add a new entry. Suppose the ASP.NET code looks like the text above and the Labell control is not in the same or
ancestor naming container. Also suppose the control referenced in the property TextBox2 control must be added.

[CH#]
uses PeterBlum.DES;

ControlConnection vConnection = (ControlConnection)
FieldStateControllerl_ExtraControlsToRunThisAction[1];

vConnection.ControlInstance = Labell;

// add TextBox2. It can be either a control reference or its ID

FieldStateControllerl._ExtraControlsToRunThisAction.Add(TextBox2);

[VB]
Imports PeterBlum.DES
Dim vConnection As ControlConnection = _
CType(FieldStateControllerl._ExtraControlsToRunThisAction(1l), ControlConnection)
vConnection.Controllnstance = Labell
" add TextBox2. It can be either a control reference or its ID
FieldStateControllerl._ExtraControlsToRunThisAction.Add(TextBox2)

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 33 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Controls To Change Properties
The Properties Editor shows these properties in the “Control To Change” category.

e ControlIDToChange (string) — Only on FieldStateController. The ID to the control whose state will be changed. If this
ID is unassigned, the FieldStateController is disabled.

This ID must be in the same or an ancestor naming container. If it is in another naming container, use
ControlToChange. Be sure that the control whose ID is used here has the runat=server property.

Throughout DES, any property that accepts a control ID supports a special syntax that allows you to refer to a child
property inside of the control you specify. That child property must provide the data entry control you are trying to
validate, or have its own child property with that data entry control.

[ID to the container control].[property with the data entry control]

[ID to the container control].[property exposing another container
control].[property with the data entry control]

If any parent object is also a System.Web .Ul .Controls subclass, you can specify the ID of a control it contains. It
will call FindControls(id)to find the child control.

[ID to the container control].[ID of the child control]

[ID to the container control].[property exposing another container control].[ID
of the child control]

e ControlToChange (System.Web.Ul.Control) — Only on FieldStateController. A reference to the control whose state
will be changed. It is an alternative to ControllDToChange that you must assign programmatically. It accepts controls
in any naming container.

When programmatically assigning properties to a FieldStateController, if you have access to Control To Change’s
object, it is better to assign it here than assign its ID to the ControlIDToChange property because DES operates faster
using ControllIDToChange.

e ControlConnections (PeterBlum.DES.Web.WebControls.ControlConnectionCollection) - Only on
MultiFieldStateController. This collection contains
PeterBlum.DES.Web.WebControls.FSAControlConnection objects that defines a reference to a control,
either by its ID or an object reference. When setting up the MultiFieldStateController, you should add a
FSAControlConnection object for each control whose state will change. Set the FSAControlConnection.ControllD
property to the ID of the control if it’s in the same or ancestor naming container. Set the
FSAControllConnection.Controllnstance property programmatically to the control in any other naming container.

Be sure that each control whose ID is used has the runat=server property.

methods and events.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 34 of 309

http://www.peterblum.com/des/support.aspx�
http://msdn2.microsoft.com/en-us/library/system.collections.arraylist(vs.71).aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Attributes To Change Properties
The Properties Editor shows these properties in the “Attributes to Change” category.

The properties contained in ConditionTrue are added directly to the <des:FieldStateControl ler> tag. Use this
format: <des:FieldStateController ConditionTrue-propertyname="value'>. For example:

<des:FieldStateController id="FieldStateControllerl"” runat=server
ConditionTrue-Visible="False'>

The properties contained in ConditionFalse are added directly to the <des:FieldStateControl ler> tag. Use
this format: <des:FieldStateController ConditionFalse-propertyname="value'>. For example:

<des:FieldStateController id="FieldStateControllerl"™ runat=server
ConditionFalse-Visible="False'>

InvisiblePreservesSpace (Boolean) — Determines if a control takes up space on the page when it is invisible. When the
ConditionTrue.Visible or ConditionFalse.Visible property causes the field to be hidden, there are two ways the field
can be hidden: Preserve the space of the element or remove the element entirely. This depends on the display style
attribute.

When true, space is preserved. (The style is set to visibility:hidden with no change to the display style.)

When false, the element is removed. (The style is visibility:hidden;display:none.) When the element becomes
visible once again, the display style is restored to its original value.

It defaults to true.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 35 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Properties of ConditionTrue and ConditionFalse

The PeterBlum.DES.StateSettings class is used by the ConditionTrue and ConditionFalse properties to define
most of the attributes that you can change on a control. When these values are set differently between ConditionTrue and

e Visible (Boolean) — Sets the visibility. When true, it is visible. When false, it is hidden.

hidden. It defaults to true.

This property changes style:visibility. If InvisiblePreservesSpaces is true, it also changes style:display.

e Enabled (Boolean) — Sets the enabled state on controls that support the HTML property disabled. When true, the
control is enabled (disabled=false). When fal se, the control is disabled.

Most browsers support the disabled attribute on data entry controls and buttons (<input>, <select> and
<textarea> tags). Internet Explorer supports it on most tags. When you disable a <div>, for example, all data entry
controls it contains appear disabled. Yet, textboxes may still be editable because they don’t actually have their own
disabled attribute set up. To provide cross browser compatibility, limit this property to data entry controls and
buttons.

It defaults to true.

When the ControlToChange is not a data entry control, setting Enabled to fal se works differently. Normally the
Enabled property adds the disabled=true attribute to the control. But that doesn’t have any effect on FireFox and
many other browsers. Instead, this feature switches to using a style sheet. It uses the style "DES_DisabledLabel"
which is defined is in DES/Appearance/Interactive Pages/InteractivePages.css.

Here is its definition:

-DES_DisabledLabel

{
color: #COCOCO; /* light gray */

}

Effectively it becomes the same as using Enabled=true and CssClass="+DES_DisabledLabel". (The + character
lets it merge its style with any already defined on the ControlToChange.)

You can change this class name by adding the PageManager control and setting its DisabledLabelCssClass property to
the desired class name. You can also change it globally by editing the DefaultDisabledLabelCssClass property in
the Global Settings Editor.

e ReadOnly (Boolean) — Sets the readOnly attribute on controls that support the HTML property readOnly: TextBoxes,
<input type="text”">, and <textarea> tags.

When true, the control is read only. When fal se, the control is editable.
It defaults to False.

e CssClass (string) — Sets the className attribute to a style sheet class name. Since the style includes so many visual
attributes, this is recommended over setting individual styles (which can be done in the Other property.)

When "{ORIG}", it automatically uses the initial value found on the page.
When "", it sets the value to "™

If it starts with a + character, it merges with the existing style of the control. If it does not start with a + character, it is
the only style applied to the control.

It defaults to "{ORIG}".

e FieldValue (string) — Sets the value property of these form elements: <input>, <textarea>, or <select>. This
includes TextBoxes, CheckBoxes, RadioButtons, Buttons, Lists, and DropDownL.ists. Lists and DropDownL.ists must
have a matching value associated with an item in their lists to update the text shown.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 36 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

When "{ORIG}", it automatically uses the initial value found on the page.

When "", it sets the value to "". If the ControlToChange is a TextBox that supports the ValueWhenBlank property, it
will apply the ValueWhenBlank instead of """

It defaults to "{OR1G}".

e InnerHTML (string) — Changes the innerHTML attribute. You can supply HTML or straight text. InnerHTML is the
text contained inside of the tags: <tag>innerHTML</tag>.

InnerHTML can be very harmful. For example, if you assign it to a <table> tag, it will overwrite all <tr> and <td>
tags it contains. You can easily input something that is not valid for the tag whose innerHTML you are modifying.

Good candidates are the Label and . If a Panel, <div>, TableCell, or <td> only contain text, they work well
too.

When "{ORIG}", it automatically uses the initial value found on the page.
When ", it sets the value to """
It defaults to "{ORIG}".

e URL (string) — Changes the href or src attributes on , <input type=image>, <frame>, <iframe>, and
<a> tags. This includes the Image and HyperLink web controls.

Provide a valid URL. If a hyperlink uses a script in its href attribute, scripts should start with "javascript:".
When ", it automatically uses the initial value found on the page.
It defaults to """

If your URL refers to a file within your web application, you can use the tilde “~" character as the first character to make
your web application more portable. The “~" is replaced by the web application path. Normally during development, that
folder is just below the domain root. In production, it is the domain root. For example, if you have an “Images” folder in

your web application root, declare the URL property like this: "~/Images/file.gif".

e Checked (Boolean) — Changes the checked attribute of CheckBoxes, CheckBoxL.ists, and RadioButtons.
When true, it marks the control.
When false, it unmarks the control.
It defaults to true.

e Other (PeterBlum.DES.CSAttributeDesc) — Changes any attribute or style to a value you specify. You must know the
name of the attribute or style and supply a legal value for it.

attribute topic will identify whether it is also supported in DOM by indicating its support in the W3C standards.

You do not have to define the Other property in both FieldStateController.ConditionTrue and
FieldStateController.ConditionFalse. When you leave one without an AttributeName, DES will automatically
capture the current value from the browser as the page is loaded and use it. You can also assign entirely different
AttributeNames in ConditionTrue and ConditionFalse.

Note: If you want to specify more than one attribute or style, you must create one FieldStateController for each.
To set up the Other property, you must specify four values: AttributeName, Value, DataType, and AttributeType.
0 AttributeName (string) — The name of the attribute or style. If ", the Other property is not used. It defaults to

Note: Attribute names are case sensitive. Enter them exactly as specified in the DHTML or DOM specification.

0 Value (string) — The value to assign to the attribute or style. It defaults to ""'. When the DataType is Boolean,
assign ‘false’ or ‘true’. When the DataType is Integer, assign only digits.

o DataType (enum PeterBlum.DES.AttributeDataType) — Specifies the data type of the attribute or style. You
must be sure to choose the correct type or you may get JavaScript errors at runtime. This enumerated type has
these values:

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 37 of 309

http://www.peterblum.com/des/support.aspx�
http://msdn2.microsoft.com/en-us/library/ms533050.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

= String - This is the default
= Integer
= Boolean

0 AttributeType (enum PeterBlum.DES.AttributeType) — Specifies whether the attribute is on the field or on the
style of the field. This enumerated type has these values:

= Attribute - This is the default.
= Style

Here is the ASP.NET formatting for entering these properties:

<des:FieldStateController id="FieldStateControllerl"” runat="server"
ConditionTrue-Other-AttributeName=""title"
ConditionTrue-Other-Value="This is a tooltip"
ConditionTrue-Other-AttributeType="Attribute"
ConditionTrue-Other-DataType="String'>

ConditionFalse-Other-AttributeName="height"
ConditionFalse-Other-Value="30"
ConditionFalse-Other-AttributeType=""Style"
ConditionFalse-Other-DataType=""I1nteger">
</des:FieldStateController>

e ChangeStateFunctionName (String) — Sometimes you need to write your own code to change attributes. For example,
you have a complex control that needs to hide several related controls when it is hidden. You can write client-side code
to handle this.

details.
This property is name of a JavaScript function that will run.

ALERT: Many users make the mistake of assigning JavaScript code to this property. This will cause JavaScript errors.
GOOD: “MyFunction”. BAD: “MyFunction();”” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of this property exactly matches the function definition.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 38 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Update Validators Properties
The Properties Editor shows these properties in the “Update Validators” category.

Note: These properties are supported by the DES Validation Framework but not the native Validation Framework.

ValidateChangedControls (Boolean) — When true, validate the controls after applying changes. It validates controls
defined in ControlIDToChange, ControlToChange, and ControlConnections properties.

Generally this is done when the controls to change are data entry controls that have their visibility or enabled state
changed. Usually your Validators will have their Enabler properties set to detect the visibility or enabled state of the

When true, validate. When fal se, do not validate, but you can still use UseValidationGroup.
It defaults to False.

UseValidationGroup (Boolean) — Runs all Validators whose group matches the ValidationGroup property upon
completion of the field state change. It behaves just like the user clicked a submit button for a particular group, including
an update of ValidationSummary controls.

Set this to true when you have a Validator control associated with a control that this FieldStateController has hidden or
disabled, usually in its Enabler property. As a result, the Validator will update itself.

This is an alternative to ValidateChangedControls.
It defaults to False.

The Validator control must include an Enabler property setting that detects the control it evaluates is hidden or disabled
using the VisibilityCondition or EnabledCondition.

ValidationGroup (string) — Defines a group name used by Validators that you want to run when this
FieldStateController changes a field. When UseValidatorGroup is true, all Validators matching this group name are
run after the field state has changed. This allows validators to remove themselves when the state no longer supports
them. Use "*" to run through all groups. It defaults to "".

determines if all validators are evaluated or just those that were already evaluated once.

Each validator knows if it has previously been evaluated on this page, even if a postback occurs (so long as the server
side calls PeterBlum_DES .Globals._WebFormDirector .Validate()) or on an AJAX callback. This can

improve the user interface by avoiding having error messages appear on fields that are part of the validation group but
have yet to be edited.

Set this to true when you don't want a validator to appear on fields the user hasn't edited based on the
FieldStateControllers action.

Set it to False to include all validators determined by the ValidateChangedControls or UseValidationGroup
properties.

It defaults to true.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 39 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

When to Use the Control Properties
The Properties Editor shows these properties in the “When To Use” category.

e Enabled (Boolean) — If you have added the FieldStateController to the page but need to disable it completely, set this
property to false. It defaults to true.

If the FieldStateController references another control whose Visible property is set to Fal se, the FieldStateController is
automatically disabled. This is because when Visible is fal se, the web control does not generate any HTML and the

e Enabler (PeterBlum.DES.IBaseCondition) — There are times when a FieldStateController should be disabled. For
example, don’t change the state because the textbox is invisible or a checkbox is unmarked. These rules are formed by

“None”, where it doesn’t disable the control. You can set it to any Condition, including those you may create
programmatically.

Consider these issues when using the Enabler:

0 Most Conditions have a property called EvaluateOnClickOrChange which defaults to true. Change it to
False when using it in an Enabler.

o Do not use this to detect a control whose Visible property is set to fal se. Such a control does not create
HTML for the client-side to use. Instead, set the Enabled property to false when the control is invisible.

Select the Condttion to use
Condition |CheckStateCondition -

Evaluates CheckBoxes and RadioButtons to determine if the checked state matches
the Checked property.

Properties

Control DToEvaluate

E When to use
Enabled
EvaluateOnClickOrChange

Checked

The state of a CheckBox or RadioButton’s Checked property desired for a true
resulting condition.

2. Establish the properties in the Properties grid.
Reminder: Be sure to set EvaluateOnClickOrChange to false on all Conditions within the Enabler as shown.
3. Click OK.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 40 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

If you want to enter the Enabler property and its child properties into the web form using the HTML mode, there are
special considerations. The format is very unusual, in part because the .Net framework doesn’t support changing the
class of a property (polymorphism) without an interesting hack.

Here is the FieldStateController with the Enabler set to the CheckStateCondition.

<des:FieldStateController id="FieldStateControllerl” runat="server"
ControlIDToChange=""Spanl™ >

<EnablerContainer>
<des:CheckStateCondition ControlIDToEvaluate="CheckBox1""
EvaluateOnClickOrChange="false" >
</des:CheckStateCondition>
</EnablerContainer>

</des:FieldStateController>
Reminder: Be sure to set EvaluateOnClickOrChange to false on all Conditions within the Enabler as shown.

Notice that the Enabler property never appears in the attributes of the <des:FieldStateController> tag. (It will
be added when using the Properties Editor but it’s completely meaningless.) Instead, the <EnablerContainer> tag
is a child of the FieldStateController tag. That tag never has any attributes. The child to <EnablerContainer>

<des:classname [all properties] />

0 des:classname — Use any Condition class for the classname. If you create your own classes, you must declare
the namespace using the <% @REGISTER %> tag at the top of the page.

o [all properties] — Enter the properties into the tag the same way you do for any other control.

1. Create an instance of the desired Condition. There is a constructor that takes no parameters.

Note: There are also constructors that take parameters representing some of the control’s properties. Each
demands an “owner” in the first parameter. That value must be the FieldStateController object.

2. Assign property values.
Reminder: Be sure to set EvaluateOnClickOrChange to false on all Conditions within the Enabler.

3. Assign the Condition object to the Enabler property.
In this example, add the CheckStateCondition, which is checking CheckBox1, to FieldStateControllerl.

[C#]

PeterBlum.DES.Web.WebControls.CheckStateCondition vCond =
new PeterBlum.DES.Web.WebControls.CheckStateCondition();
vCond.ControlToEvaluate = CheckBox1;
vCond.EvaluateOnClickOrChange = false;
FieldStateControllerl.Enabler vCond;

[VB]
Dim vCond As PeterBlum.DES.Web.WebControls.CheckStateCondition = _
New PeterBlum.DES._Web._WebControls.CheckStateCondition()
vCond.ControlToEvaluate = CheckBox1

vCond.EvaluateOnClickOrChange = False
FieldStateControllerl_Enabler = vCond

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 41 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Behavior Properties
The Properties Editor shows these properties in the “Behavior” category.

INAJAXUpdate (Boolean) — When the page uses AJAX callbacks to add, update, or remove this control, set this to
true. It defaults to false.

In addition, if any of these properties identify a non-DES control that participates in the AJAX callback, set this to
true:

0 ControlIDToChange and ControlToChange

Controls in ControlConnections.

Condition. Look at the ControllDToEvaluate and SecondControlIDToEvaluate.
Enabler. Look at the ControlIDToEvaluate and SecondControlIDToEvaluate.
ExtraControlsToRunThisAction.

O O O o

Note: This is only needed for non-DES controls. DES controls will tell the FieldStateController if their own
ISAJAXUpdate property is true.

See “Using These Controls with AJAX” in the General Features Guide.

establishes an initial appearance. You normally do not set any properties on your controls that are controlled by the
FieldStateController.

Recommended in most cases. Set it to False only when you only want the controls being monitored to apply the field
state.

It defaults to true.

UpdateWhileEditing (Boolean) — Determines if the FieldStateController is triggered as the user types into a textbox that

to evaluate the FieldStateController with each keystroke.
It defaults to False.

SupportClientSideLookupByID (Boolean) - Allows JavaScript programmers to get to the client-side representation of
the FieldStateController object by the ClientlD of the owner control.

Use the client-side function DES_FindAOBy ld(ClientlD) to search for the “Action object” that matches the
ClientID you specify. That function will return nul I if not found.

Use the Action object to invoke the FieldStateController as if the user changed a field associated with it. Pass the Action
object to the client-side function DES_DoAction(action object). The Action object contains the result of

1=success; O=failed; -1=cannot evaluate.
Here is a function that invokes the FieldStateController and returns the result:

<script type="text/javascript® language="javascript®>
function InvokeFSC(pClientiD)

{

var VAO = DES_FindAOByld(pClientlID);

DES_DoAction(VvAO0);

return vAO.CondResult; //l=success; O=failed; -l1=cannot evaluate
3
</script>

Suppose you have a Button called Buttonl that will be used to invoke FieldStateControllerl. Here is how you set it up to
call InvokeFSC in Page_Load():

Buttonl._Attributes.Add("'onclick",
"InvokeFSC("" + FieldStateControllerl._ClientlD + "");return false;™)

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 42 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

When SupportClientSideL.ookupByID is true, two things happen:
1. The ID is written as a property, CID, into the control. (It isn’t written by default to avoid adding excess text to
the page.)

2. If the Enabled property is false, normally no code is written to the client side. This is overridden and code is
generated so users can toggle the Enabled property.

It defaults to False.

o ViewStateMgr (PeterBlum.DES.Web.WebControls.ViewStateMgr) — Enhances the ViewState on this control to provide
more optimal storage and other benefits. Normally, the properties of this control and its segments are not preserved in the
ViewState. When working in ASP.NET markup, define a pipe delimited string of properties in the PropertiesToTrack
property. When working in code, call ViewStateMgr.TrackProperty(*'propertyname') to save the
property. Individual segments have a similar method: TrackPropertylnViewState(*'propertyname').

For more details, see “The ViewState and Preserving Properties for PostBack” in the General Features User’s
Guide.

e PropertiesToTrack (string) — A pipe delimited list of properties to track. Designed for use in markup and the properties
editor. The ViewState is not automatically used by most of these properties. To include a property, add it to this pipe
delimited list.

For example, "Group|MayMoveOnClick".
When working programmatically, use ViewStateMgr.TrackProperty("PropertyName").

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 43 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

FSCOnCommand and MultiFSCOnCommand Controls

The PeterBlum.DES.Web.WebControls.FSCOnCommand and
PeterBlum.DES.Web.WebControls.MultiFSCOnCommand controls are FieldStateControllers that the user fires

checkboxes in a CheckBoxList.

FSCOnCommand and MultiFSCOnCommand are actually subclasses of FieldStateController and MultiFieldStateController.
They were created to simplify the setup of a special case, where a button is clicked and a single state is applied. You assign
the controls that are the commands, the controls to change, and the changes to make.

These controls do most of their work on the client-side. If the browser does not support the client-side scripting needed to run
a FieldStateController, it is disabled. That will leave your controls with the state that you define in their properties on the
server side.

The FieldStateController adds no HTML to your page as it does it work through JavaScript. You can add them anywhere to
your web form.

Click on any of these topics to jump to them:

¢ Features

4 Using the FSCOnCommand Controls

® Controls that run the FSCOnCommand control

e Attribute Values To Change

® Updating Validators

® Changing Visibility on a Complex Control

® Selectively Running the Control

® Extending the Attributes with Your Own Code

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 44 of 309

http://www.peterblum.com/des/support.aspx�
http://learningdes.peterblum.com/InteractivePages/Menu.aspx?Topic=FSC�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Features

The FSCOnCommand and MultiFSCOnCommand controls make changes to the HTML elements on your page based on a
button click. They can change almost any element on your page:

e Show or hide

e Enable or disable form controls (textboxes, lists, buttons, etc)

e Change the ReadOnly state of a textbox

e Change the style sheet class name, which can deliver an entirely different appearance through style sheets
e Change the textual value of a textbox

e Change the value of the selected element in a listbox or dropdownlist

e Change the “innerHTML” of a Label, , or any other HTML tag that supports “innerHTML”

e Change the URL associated with hyperlinks, images and other HTML tags that have an href= or src= attribute.
e Change the mark in a checkbox or radiobutton

e Mark or unmark all checkboxes in a CheckBoxL.ist

e Change the value of any document object model attribute that has a datatype of string, boolean or integer
e Change the value of any document object model style

e Run your own JavaScript to handle special situations

You can see how powerful these controls are. You only need to set properties on the controls and you have enhanced your
user interface.

The FSCOnCommand and MultiFSCOnCommand are invoked by a click on a “command” such as a button and apply a
single field state. Any HTML tag that supports the “onclick” event can be used to fire it. Examples:

e You have a CheckBoxL.ist and use a button titled “Select All” to mark all checkboxes.
e Inatabbed interface, an image that represents a “tab” can show or hide a panel containing the tab’s “page”

Once these controls have done their task, they can optionally run the Validators on the field whose state was changed or run
an entire validation group.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 45 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Using the FSCOnCommand Controls

There are three elements that always must be set up on a FSCOnCommand or MultiFSCOnCommand control:
e The “commands” - controls that run the FSCOnCommand control when clicked
e The control or controls whose attributes that you want to change

e The attribute values that will change

Click on any of these topics to jump to them:

Controls that run the FSCOnCommand control

S & & & & ¢ o o
c
S
o
=
=
[{e]
<
QL
<
>
o
17

Controls that run the FSCOnCommand control

Add an element to the page that will run the FSCOnCommand Control. It can be almost any HTML tag that supports the
client-side onclick event. Buttons, Labels, Tables, Images, Hyperlinks and more are all usable. So create the interface that
you prefer. If you use an HTML tag in your web form, be sure it has an 1D and runat=server.

Special concerns:

e The Button class can select between submit and non-submit styles with the UseSubmitBehavior property. Set it to
False. In addition, set the button’s OnClientClick property to "return: false;".

e When using a HyperLink, set the NavigationUrl property to "javascript:return false;".
e Whenusinga tag, set the href attribute to "javascript:return false;"
Assign the command control to the ControllIDToRunThisAction property.

If you have several command controls that run the same FSCOnCommand control, add them to the
ExtraControlsToRunThisAction property.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 46 of 309

http://www.peterblum.com/des/support.aspx�
http://learningdes.peterblum.com/InteractivePages/Menu.aspx?Topic=FSC�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Controls To Change
You must assign the ID or an object reference to the control(s) that you want to change. The FSCOnCommand control

object reference.

The MultiFSCOnCommand control changes as many controls as you want. Add

PeterBlum.DES.Web.WebControls.FSAControlConnection class can be assigned an ID to its ControllD
property and an object reference to its Controllnstance property.

Note: All controls must have an ID and runat=server property.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 47 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Attribute Values To Change
With the following properties, you can change any of these attributes:

VisibleState — changes the style:visibility and style:display attributes. Use True, False, or Ignore for its value.
(Programmers will find these on the enumerated type PeterBlum.DES.TrueFalselgnore.) For a special case,

EnabledState — changes the disabled attribute on the controls that support it (which varies by browser). Use True,
False, or Ignore for its value. (Programmers will find these on the enumerated type
PeterBlum.DES.TrueFalselgnore.)

ReadOnly - changes the readOnly attribute on textboxes. Use the ReadOnly property. Use True, False, or Ignore
for its value. (Programmers will find these on the enumerated type PeterBlum_.DES.TrueFalselgnore.)

CssClass — changes the style sheet class name.
FieldValue — changes the value attribute of <input>, <textarea>, and <select> tags

InnerHTML State — changes the innerHTML attribute on any control. InnerHTML is found in tags that permit
contents between their begin and end tags, like this: <tag>innerHTML</tag>. A Label, Panel, and TableCell are
web controls that generate tags that support InnerHTML (, <div>, and <td> respectively.)

URL - changes the href or src attribute to a new URL on , <input type=image>, <frame>, <iframe>,
and <a> tags.

Checked — changes the checked attribute on a checkbox or radiobutton. Use True, False, or Ignore for its value.
(Programmers will find these on the enumerated type PeterBlum.DES.TrueFalselgnore.)

If you know the name and legal values of an attribute or style, there is an all-purpose property, Other, which will modify
the attribute or style with the value.

In addition, you can supply a JavaScript function to run to handle unusual cases:

A third party custom control uses its own JavaScript to adjust its properties.
The control is created by JavaScript on the client side and has no server-side ID.

A calculation must be performed before the setting can be determined.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 48 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Updating Validators
Sometimes a field hidden or disabled by the FSCOnCommand control has an associated Validator whose error message is

Use the RevalidateOnly property to evaluate only validators that have previously been evaluated on the page. This prevents
validator errors from appearing further down the page, where the user has not edited.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 49 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Changing Visibility on a Complex Control

Some web controls include a number of HTML tags. The control’s ID property may refer to just one of the HTML tags it
generates. If you use the FSCOnCommand to show and hide that control by its 1D, you will only show or hide the one tag
associated with the control ID.

Example: The DateTextBox control

ALERT: DES’s own controls — including the DateTextBox - do not need the this technique as they automatically account for
the issue here. This is merely an example.

The textboxes in Peter’s Date And Time use multiple HTML tags. For example, the DateTextBox has an tag to the
right of the textbox which is used to toggle a popup calendar. The textbox in these controls is associated with the control’s
ID.

<input type="text" id="control_clientid® />

image visible.

Solution

Look at the HTML output of any web control to see which HTML tag is assigned the ID (specifically the ClientID property
value.) If that tag encloses all HTML for that control, you can use the web control’s ID with the
FSCOnCommand.ControlIDToChange property.

If the tag does not enclose the control, add a or <div> tag around the web control. Set the runat=server property
and assign an ID value. Set the FSCOnCommand.ControllDToChange property to the ID of that or <div> tag.

ALERT: DES’s own controls — including the DateTextBox - do not need the this technique as they automatically account for
the issue here. This is merely an example.

<des:DateTextBox runat="server"' id="DateTextBox1l" />

<des:FSCOnCommand runat="server" id="FSC1"
Control IDtoChange="DateTextBoxlContainer' VisibleState="true">
<Condition>
[you determine this]
</Condition>
</des:FSCOnCommand>

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 50 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Selectively Running the Control

Sometimes, you will want the command button to run only in certain situations. For example, if you use a checkbox as a
command to mark a CheckBoxL.ist only when the user marks the checkbox, the FSCOnCommand should not run when the
user unmarks the checkbox.

This is a checkbox that marks a CheckBoxList when the user marks the checkbox.
[Zelect all [JBananas [Oranges [FPeaches

<asp:CheckBox i1d=CheckBoxl runat="'server" Text="Select all''></asp:CheckBox>
<asp:CheckBoxList id=CheckBoxListl runat="'server"
RepeatDirection="Horizontal" RepeatLayout="Flow">
<asp:Listltem Value="Bananas''>Bananas</asp:Listltem>
<asp:Listltem Value="0Oranges''>0ranges</asp:Listltem>
<asp:Listltem Value=""Peaches''>Peaches</asp:Listltem>
</asp:CheckBoxList>
<des:FSCOnCommand i1d=FSCOnCommandl runat="'server"
ControlIDToChange=""CheckBoxList1l" ControlIDToRunThisAction=""CheckBox1"
Checked="True" >
<EnablerContainer>
<des:CheckStateCondition Control IDToEvaluate="CheckBox1">
</des:CheckStateCondition>
</EnablerContainer>
</des:FSCOnCommand>

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 51 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Example: FSCOnCommand

Suppose you have a “Select All” button that marks all checkboxes in a CheckBoxList

<des:button id="SelectAllBtn" runat="server"™ Text="Select All"
UseSubmitBehavior="false" />

Check all <asp:CheckBoxList id=CheckBoxListl runat="'server"
RepeatLayout="Flow'" RepeatDirection=""Horizontal">
<asp:Listltem Value="1">1</asp:Listltem>
<asp:Listltem Value="2">2</asp:Listltem>
<asp:Listltem Value="3">3</asp:Listltem>
</asp:CheckBoxList>
<des:FSCOnCommand i1d="FSCOnCommandl™ runat="server"
ControlIDToRunThisAction="SelectAllBtn" ControllDToChange=""CheckBoxListl"
Checked="True'></des :FSCOnCommand>

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 52 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Example: MultiFSCOnCommand

This is a modification of the previous example. Instead of having a CheckBoxList, it has individual CheckBoxes and uses the
MultiFSCOnCommand to update them.

<des:button i1d="'SelectAllIBtn" runat="'server"™ Text="Select All"
UseSubmitBehavior="false" />

<asp:CheckBox i1d=""CheckBox1" runat="'server" Text="1" />
<asp:CheckBox 1d=""CheckBox2" runat="server™ Text="2" />
<asp:CheckBox id="CheckBox3" runat="'server™ Text='"3" />
<des:MultiFSCOnCommand id=""MultiFSCOnCommandl" runat="'server"
ControlIDToRunThisAction="SelectAlIBtn" Checked="True">
<ControlConnections>
<des:FSAControlConnection Control ID="CheckBox1" />
<des:FSAControlConnection Control ID="CheckBox2" />
<des:FSAControlConnection Control ID="CheckBox3" />
</ControlConnections>
</des:MultiFSCOnCommand>

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 53 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Adding the FSCOnCommand Control

These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View

oo command to return to the link. Look for this in the Adobe Reader (shown v6.0)
1. Prepare the page for DES controls. See “Preparing a page for DES controls” in the General Features Guide. It covers
issues like style sheets, AJAX, and localization.
2. Set up the controls whose attributes will change. You don’t have to set the properties that will be changed to their initial
(“off”) value. The FSCOnCommand control will do that for you, unless you set Setlnitial Appearance to false.
3. Add the “command” control, such as the button. Special concerns:
e The Button class can select between submit and non-submit styles with the UseSubmitBehavior property. Set it to
False. In addition, set the button’s OnClientClick property to "return: false;".
e When using a HyperLink, set the NavigationUrl property to "jJavascript:return false;".
e Whenusing a tag, set the href attribute to "javascript:return false;"
4. Add the FSCOnCommand control to the page. Its location does not matter as it contributes no HTML to the page.
Visual Studio and Visual Web Developer Design Mode Users
Drag the FSCOnCommand control from the Toolbox onto your web form. It will look like this:
[EID
@ o FSCOnCommanc
Text Entry Users
Add the control (inside the <form> area):
<des:FSCOnCommand id="[YourControllID]" runat="server' />
Programmatically Creating the Control
e Identify the control which you will add the FSCOnCommand control to its Controls collection. Like all ASP.NET
controls, the FSCOnCommand control can be added to any control that supports child controls, like Panel, User
Control, or TableCell. If you want to add it directly to the Page, first add a PlaceHolder and use the PlaceHolder.
o Create an instance of the FSCOnCommand control class. The constructor takes no parameters.
e Assign the ID property.
e Add the FSCOnCommand control to the Controls collection.
In this example, the FSCOnCommand control is created with an ID of “FSCOnCommand1”. It is added to PlaceHolder1.
[C#]
PeterBlum.DES._Web_WebControls.FSCOnCommand VFSC =
new PeterBlum.DES._Web._WebControls.FSCOnCommand();
vFSC.ID = "FSCOnCommandl1'';
PlaceHolderl.Controls.Add(VvFSC);
[VB]
Dim VvFSC As PeterBlum.DES.Web.WebControls.FSCOnCommand = _
New PeterBlum.DES.Web.WebControls.FSCOnCommand()
VFSC.ID = "FSCOnCommandl'
PlaceHolderl.Controls.Add(vFSC)
Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 54 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Guidelines for setting properties
e Design mode users can use the Properties Editor or the Expanded Properties Editor. (See “Expanded Properties
Editor” in the General Features Guide.) The SmartTag ™ also offers some of the most important properties.

e Text entry users should add the properties into the <des:ControlClass> tag in this format:
propertyname="value"

e When setting a property programmatically, have a reference to the control’s object and set the property according to
your language’s rules.

o VisibleState, EnabledState, ReadOnly, Checked use an enumerated type that has three values: 1gnore, False,
and True. They default to Ignore. Change to False or True as needed. (Programmers will find these on the
enumerated type PeterBlum_.DES_TrueFalselgnore.)

e CssClass, FieldValue, and InnerHTMLState default to “{ORIG}” and will not be applied until you change their
value.

8. Sometimes a field hidden or disabled by the FSCOnCommand control has an associated Validator whose error message

9. When the page uses AJAX to update any of its controls, you must do some additional setup. See “Here are some other
considerations:

e Ifyou are using an AJAX system to update this control, set the INAJAXUpdate property to true. Also make sure
the PageManager control or AJAXManager object has been setup for AJAX. See “Using these Controls With
AJAX” in the General Features Guide. Failure to follow these directions can result in incorrect behavior and
javascript errors.

e This control does not preserve most of its properties in the ViewState, to limit its impact on the page. If you need to
use the ViewState to retain the value of a property, see “The ViewState and Preserving Properties for PostBack” in
the General Features Guide.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 55 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Adding the MultiFSCOnCommand Control

e O

These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. Prepare the page for DES controls. See “Preparing a page for DES controls” in the General Features Guide. It covers
issues like style sheets, AJAX, and localization.
2. Set up the controls whose attributes will change. You don’t have to set the properties that will be changed to their initial
(“off”) value. The FSCOnCommand control will do that for you, unless you set SetInitial Appearance to false.
3. Add the “command” control, such as the button. Special concerns:
e The Button class can select between submit and non-submit styles with the UseSubmitBehavior property. Set it to
false.
e When using a HyperLink, set the NavigationUrl property to "javascript:return false;".
e Whenusinga tag, set the href attribute to "javascript:return false;".
4. Add the MultiFSCOnCommand control to the page. Its location does not matter as it contributes no HTML to the page.
Visual Studio and Visual Web Developer Design Mode Users
Drag the MultiFSCOnCommand control from the Toolbox onto your web form. It will look like this:
[EID
@ o MultiFSConcCammand
When you view the control in design mode, sometimes you will see the following:
Text Entry Users
Add the control (inside the <form> area):
<des:MultiFSCOnCommand id=""[YourControllD]" runat="server" />
Programmatically Creating the Control
e Identify the control which you will add the MultiFSCOnCommand control to its Controls collection. Like all
ASP.NET controls, the MultiFSCOnCommand control can be added to any control that supports child controls, like
Panel, User Control, or TableCell. If you want to add it directly to the Page, first add a PlaceHolder and use the
PlaceHolder.
o Create an instance of the MultiFSCOnCommand control class. The constructor takes no parameters.
e Assign the ID property.
e Add the MultiFSCOnCommand control to the Controls collection.
In this example, the MultiFSCOnCommand control is created with an ID of “MultiFSCOnCommand1”. It is added to
PlaceHolder1.
[C#]
PeterBlum.DES._Web.WebControls_MultiFSCOnCommand vMFSC =
new PeterBlum.DES._Web._WebControls_MultiFSCOnCommand();
VMFSC.ID = "MultiFSCOnCommandl1™;
PlaceHolderl.Controls.Add(vMFSC);
[VB]
Dim VMFSC As PeterBlum.DES.Web.WebControls.MultiFSCOnCommand = _
New PeterBlum.DES._Web._.WebControls.MultiFSCOnCommand()
VMFSC.ID = "MultiFSCOnCommandl
PlaceHolderl.Controls.Add(vMFSC)
Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 56 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Guidelines for setting properties
e Design mode users can use the Properties Editor or the Expanded Properties Editor. (See “Expanded Properties
Editor” in the General Features Guide.) The SmartTag ™ also offers some of the most important properties.

e Text entry users should add the properties into the <des: ControlClass> tag in this format:
propertyname="value"

e When setting a property programmatically, have a reference to the control’s object and set the property according to
your language’s rules.

PeterBlum.DES_Web.WebControls.FSAControlConnection objects. Assign the ID of the control to the
ControllID property or a reference to the control in the Controllnstance property. Controllnstance can only be assigned
programmatically.

The Properties Editor for the ControlConnections property provides a window where add
PeterBlum.DES.Web.WebControls.FSAControlConnection objects and assign the ControllD property to
the 1D of the control.

-
FSAControlConnectionl Collection Editer @Ii_hj
Members: AddressLinel properties:
] Addresslinel + o=)
Lt 2 B
ressHne ControllD Addressline1

ControllD

The ID to the control that you are
Add | | Remove referencing.

[0K l ‘ Cancel |

ControlConnections is a type of collection. Therefore its ASP.NET Markup is nested as a series of
PeterBlum.DES.Web.WebControls.FSAControlConnection objects within the
<ControlConnections> tag. Each PeterBlum_.DES.Web_WebControls.FSAControlConnectionisa
tag with <des : FSAControlConnection> followed by the ControlID property.

The following example represents the same ControlConnections shown in the editor window above.

<des:MultiFSCOnCommand id="MultiFSCOnCommandl" runat="server'>
<ControlConnections>
<des:FSAControlConnection ControlID="AddressLinel" />
<des:FSAControlConnection ControlID="AddressLine2" />
<des:FSAControlConnection Control ID="AddressLine3" />
</ControlConnections>
</des:MultiFSCOnCommand>

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 57 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Use the Add () method on the ControlConnections property. Pass the 1D, reference to the control, or
PeterBlum.DES.Web.WebControls.FSAControlConnection object. In this example, “AddressLinel” is an
ID to a control and AddressLine2 is a reference to the control object.

[C#]
MultiFSCOnCommandl.ControlConnections.Add("'AddressLinel™);
MultiFSCOnCommandl.ControlConnections.Add(AddressLine?);

[VB]

MultiFSCOnCommandl.ControlConnections.Add("'AddressLinel™)
MultiFSCOnCommandl.ControlConnections.Add(AddressLine?)

o VisibleState, EnabledState, ReadOnly, Checked use an enumerated type that has three values: 1gnore, False,
and True. They default to Ignore. Change to False or True as needed. (Programmers will find these on the
enumerated type PeterBlum.DES. TrueFalselgnore.)

e CssClass, FieldValue, and InnerHTMLState default to “{ORIG}” and will not be applied until you change their
value.

8. Sometimes a field hidden or disabled by the MultiFSCOnCommand control has an associated Validator whose error

9. Here are some other considerations:

e Ifyou are using an AJAX system to update this control, set the INAJAXUpdate property to true. Also make sure
the PageManager control or AJAXManager object has been setup for AJAX. See “Using these Controls With
AJAX” in the General Features Guide. Failure to follow these directions can result in incorrect behavior and
javascript errors.

e This control does not preserve most of its properties in the ViewState, to limit its impact on the page. If you need to
use the ViewState to retain the value of a property, see “The ViewState and Preserving Properties for PostBack” in
the General Features Guide.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 58 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES

A moouLe oF PETERS OATA ENTRY SUITEVS

Properties of FSCOnCommand And MultiFSCOnCommand

® & & O o o
>
%_‘.
<
@
w
_|
o
o)
=0
QD
>
[(e}
(]
i
o
e}
o
=
(72}

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved

Page 59 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Invoke the Change Properties
The Properties Editor shows these properties in the “Invokes The Change” category.

e ControlIDToRunThisAction (string) — The ID to the control that will run this FSCOnCommand control. If this ID is
unassigned, the FSCOnCommand control will do nothing.

This ID must be in the same or an ancestor naming container. If it is in another naming container, use
ControlToRunThisAction. Be sure that the control whose ID is used here has the runat=server property.

e ControlToRunThisAction (System.Web.UI.Control) — A reference to the control whose state will be changed. It is an
alternative to ControlIDToRunThisAction that you must assign programmatically. It accepts controls in any naming
container.

e ExtraControlsToRunThisAction (PeterBlum.DES.Web.WebControls.ControlConnectionCollection) — Identifies
additional controls and elements on the page that run this FSCOnCommand control when clicked.

This property is a collection of PeterBlum.DES.Web.WebControls.ControlConnection objects. You can
assign the control’s ID to the ControlConnection.ControllD property or a reference to the control in the
ControlConnection.Controllnstance property. When using the ControlID property, the control must be in the same or
an ancestor naming container. If it is in another naming container, use Controllnstance.

Be sure that each control assigned to this collection has the runat=server property.

ExtraControlsToRunThisAction is a type of collection. Therefore its ASP.NET Markup is nested as a series of child
controls within the <ExtraControlsToRunThisAction> tag. Here is an example.

<des:FSCOnCommand i1d=""FSCOnCommandl' runat="'server'>

<ExtraControlsToRunThisAction>
<des:ControlConnection Control ID="Button2" />
<des:ControlConnection ControlID="Labell"™ />

</ExtraControlsToRunThisAction>

</des:FSCOnCommand>

Use the ExtraControlsToRunThisAction.Add() method to add an entry. This overloaded method takes one
parameter. Choose from the following:

e A reference to the control itself. This is the preferred form.
e Astring giving the ID of the control. Do not use this when the control is not in the same naming container.
e Aninstance of the class PeterBlum.DES.Web_WebControls.ControlConnection.

This example shows how to update an existing PeterBlum.DES.Web.WebControls.ControlConnection
and add a new entry. Suppose the ASP.NET code looks like the text above and the Labell control is not in the same or
ancestor naming container. Also suppose the control referenced in the property Button2 control must be added.

[C#]
uses PeterBlum.DES;

ControlConnection vConnection = (ControlConnection)
FSCOnCommandl.ExtraControlsToRunThisAction[1];

vConnection.ControlInstance = Labell;

// add Button2. It can be either a control reference or its ID

FSCOnCommandl.ExtraControlsToRunThisAction.Add(Button2);

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 60 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

[VB]
Imports PeterBlum.DES

Dim vConnection As ControlConnection = _
CType(FSCOnCommandl.ExtraControlsToRunThisAction(1l), ControlConnection)

vConnection.Control Instance = Labell
" add Button2. It can be either a control reference or its ID

FSCOnCommandl.ExtraControlsToRunThisAction.Add(Button2)

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 61 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Controls To Change Properties
The Properties Editor shows these properties in the “Control To Change” category.

e ControlIDToChange (string) — Only on FSCOnCommand. The ID to the control whose state will be changed. If this ID
is unassigned, the FSCOnCommand control is disabled. This ID must be in the same or an ancestor naming container. If
it is in another naming container, use ControlToChange. Be sure that the control whose ID is used here has the
runat=server property.

Throughout DES, any property that accepts a control ID supports a special syntax that allows you to refer to a child
property inside of the control you specify. That child property must provide the data entry control you are trying to
validate, or have its own child property with that data entry control.

[ID to the container control].[property with the data entry control]

[ID to the container control].[property exposing another container
control].[property with the data entry control]

If any parent object is also a System.Web .Ul .Controls subclass, you can specify the ID of a control it contains. It
will call FindControls(id)to find the child control.

[ID to the container control].[ID of the child control]

[ID to the container control].[property exposing another container control].[ID
of the child control]

e ControlToChange (System.Web.Ul.Control) — Only on FSCOnCommand. A reference to the control whose state will
be changed. It is an alternative to ControlIDToChange that you must assign programmatically. It accepts controls in
any naming container.

e ControlConnections (PeterBlum.DES.Web.WebControls.ControlConnectionCollection) - Only on
MultiFSCOnCommand. Add a FSAControlConnection object for each control whose state will change.

This collection contains PeterBlum_DES .Web.WebControls.FSAControlConnection objects that defines a
reference to a control, either by its ID or an object reference. Set the FSAControlConnection.ControlID property to the
ID of the control if it’s in the same or ancestor naming container. Set the FSAControllConnection.Controllnstance
property programmatically to the control in any other naming container.

Be sure that each control whose ID is used has the runat=server property.

methods and events.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 62 of 309

http://www.peterblum.com/des/support.aspx�
http://msdn2.microsoft.com/en-us/library/system.collections.arraylist(vs.71).aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Attributes To Change Properties
The Properties Editor shows these properties in the “Attributes to Change” category.

VisibleState (enum PeterBlum.DES.TrueFalselgnore) — Sets the visibility. The enumerated type
PeterBlum.DES.TrueFalselgnore has these values:

o0 Ignore - Do not use this. This value is the default.
0 True - Visible

o False - Hidden

defaults to true.

This property changes style:visibility. If InvisiblePreservesSpaces is true, it also changes style:display.

Note: The name VisibleState differs from the name “Visible” on the ConditionTrue and ConditionFalse properties
of the FieldStateController. This was done only because a Visible property already exists for a different purpose on
web controls.

EnabledState (enum PeterBlum.DES. TrueFalselgnore) — Sets the enabled state on controls that support the HTML
property disabled. The enumerated type PeterBlum.DES. TrueFalselgnore has these values:

o0 Ignore - Do not use this. This value is the default.
0 True - Enabled (disabled=false)
o0 False-Disabled

Most browsers support the disabled attribute on data entry controls and buttons (<input>, <select> and
<textarea> tags). Internet Explorer supports it on most tags. When you disable a <div>, for example, all data entry
controls it contains appear disabled. To provide cross browser compatibility, limit this property to data entry controls and
buttons.

Note: The name EnabledState differs from the name “Enabled” on the ConditionTrue and ConditionFalse
properties of the FieldStateController. This was done only because a Enabled property already exists for a different
purpose on web controls.

ReadOnly (enum PeterBlum.DES.TrueFalselgnore) — Sets the readOnly attribute on controls that support the HTML
property readOnly: TextBoxes, <input type="text">, and <textarea> tags. The enumerated type
PeterBlum.DES.TrueFalselgnore has these values:

o Ignore - Do not use this. This value is the default.
0 True - Readonly
o False - Editable

CssClass (string) — Sets the className attribute to a style sheet class name. Since the style includes so many visual
attributes, this is recommended over setting individual styles (which can be done in the Other property.)

When "{1GNORE}", this property is not used.
It defaults to "{ IGNORE}".

FieldValue (string) — Sets the value property of these form elements: <input>, <textarea>, or <select>. This
includes TextBoxes, CheckBoxes, RadioButtons, Buttons, Lists, and DropDownLists. Lists and DropDownL.ists must
have a matching value associated with an item in their lists to update the text shown.

When "{1GNORE}", this property is not used.
It defaults to "{ IGNORE}".

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 63 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

InnerHTMLState (string) — Changes the innerHTML attribute. You can supply HTML or straight text. InnerHTML is
the text contained inside of the tags: <tag>innerHTML</tag>.

InnerHTML can be very harmful. For example, if you assign it to a <table> tag, it will overwrite all <tr> and <td>
tags it contains. You can easily input something that is not valid for the tag whose innerHTML you are modifying.

Good candidates are the Label and . If a Panel, <div>, TableCell, or <td> only contain text, they work well
too.

When "{1GNORE}", this property is not used.
It defaults to "{IGNORE}".

URL (string) — Changes the href or src attributes on , <input type=image>, <frame>, <iframe>, and
<a> tags. This includes the Image and HyperLink web controls.

Provide a valid URL. If a hyperlink uses a script in its href attribute, scripts should start with "javascript:".
When "{1GNORE}", this property is not used.
It defaults to "{IGNORE}".

If your URL refers to a file within your web application, you can use the tilde “~” character as the first character to make
your web application more portable. The “~ is replaced by the web application path. Normally during development, that
folder is just below the domain root. In production, it is the domain root. For example, if you have an “Images” folder in

your web application root, declare the URL property like this: "~/Images/file.gif".

Checked (enum PeterBlum.DES. TrueFalselgnore) — Sets the checked attribute on radiobuttons and checkboxes (but not
a RadioButtonList or CheckBoxL.ist). The enumerated type PeterBlum._DES.TrueFalselgnore has these values:

o0 Ignore - Do not use this. This value is the default.
0 True - Mark the checkbox
o False - Unmark the checkbox

Other (PeterBlum.DES.CSAttributeDesc) — Changes any attribute or style to a value you specify. You must know the
name of the attribute or style and supply a legal value for it.

attribute topic will identify whether it is also supported in DOM by indicating its support in the W3C standards.
Note: If you want to specify more than one attribute or style, you must create one FSCOnCommand for each.
To set up the Other property, you must specify four values: AttributeName, Value, DataType, and AttributeType.
0 AttributeName (string) — The name of the attribute or style. If ", the Other property is not used. It defaults to

Note: Attribute names are case sensitive. Enter them exactly as specified in the DHTML or DOM specification.

0 Value (string) — The value to assign to the attribute or style. It defaults to ""'. When the DataType is Boolean,
assign ‘false’ or ‘true’. When the DataType is Integer, assign only digits.

o DataType (enum PeterBlum.DES.AttributeDataType) — Specifies the data type of the attribute or style. You
must be sure to choose the correct type or you may get JavaScript errors at runtime. This enumerated type has
these values:

= String - This is the default
= Integer
= Boolean

0 AttributeType (enum PeterBlum.DES.AttributeType) — Specifies whether the attribute is on the field or on the
style of the field. This enumerated type has these values:

= Attribute - This is the default.
= Style

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 64 of 309

http://www.peterblum.com/des/support.aspx�
http://msdn2.microsoft.com/en-us/library/ms533050.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Here is the ASP.NET formatting for entering these properties:

<des:FSCOnCommand id="FieldStateControllerl” runat="server"
Other-AttributeName="title"
Other-Value="This is a tooltip"”
Other-AttributeType="Attribute"
Other-DataType="'String">

</des:FSCOnCommand>

InvisiblePreservesSpace (Boolean) — Determines if a control takes up space on the page when it is invisible. When the
VisibleState property causes the field to be hidden, there are two ways the field can be hidden: Preserve the space of the
element or remove the element entirely. This depends on the display style attribute.

When true, space is preserved. (The style is set to visibility:hidden with no change to the display style.)

When false, the element is removed. (The style is visibility:hidden;display:none.) When the element becomes
visible once again, the display style is restored to its original value.

It defaults to true.

ChangeStateFunctionName (String) — Sometimes you need to write your own code to change attributes. For example,
you have a complex control that needs to hide several related controls when it is hidden. You can write client-side code
to handle this.

details.
This property is name of a JavaScript function that will run. It is only the function name, not

ALERT: Many users make the mistake of assigning JavaScript code to this property. This will cause JavaScript errors.
GOOD: “MyFunction”. BAD: “MyFunction();”” and “alert(*stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of this property exactly matches the function definition.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 65 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Update Validators Properties
The Properties Editor shows these properties in the “Update Validators” category.

Note: These properties are supported by the DES Validation Framework but not the native Validation Framework.

ValidateChangedControls (Boolean) — When true, validate the controls after applying changes. It validates controls
defined in ControlIDToChange, ControlToChange, and ControlConnections properties.

Generally this is done when the controls to change are data entry controls that have their visibility or enabled state
changed. Usually your Validators will have their Enabler properties set to detect the visibility or enabled state of the

When true, validate. When false, do not validate, but you can still use UseValidationGroup.
It defaults to False.

UseValidationGroup (Boolean) — Runs all Validators whose group matches the ValidationGroup property upon
completion of the field state change. It behaves just like the user clicked a submit button for a particular group, including
an update of ValidationSummary controls.

Set this to true when you have a Validator control associated with a control that this FSCOnCommand control has
hidden or disabled, usually in its Enabler property. As a result, the Validator will update itself.

This is an alternative to ValidateChangedControls.
It defaults to False.

The Validator control must include an Enabler property setting that detects the control it evaluates is hidden or disabled
using the VisibilityCondition or EnabledCondition.

ValidationGroup (string) — Defines a group name used by Validators that you want to run when this FSCOnCommand
control changes a field. When UseValidatorGroup is true, all VValidators matching this group name are run after the
field state has changed. This allows validators to remove themselves when the state no longer supports them. Use "*" to
run through all groups. It defaults to """

determines if all validators are evaluated or just those that were already evaluated once.

Each validator knows if it has previously been evaluated on this page, even if a postback occurs (so long as the server
side calls PeterBlum_DES.Globals._WebFormDirector .Validate()) or on an AJAX callback. This can

improve the user interface by avoiding having error messages appear on fields that are part of the validation group but
have yet to be edited.

Set this to true when you don't want a validator to appear on fields the user hasn't edited based on this control’s action.

Set it to False to include all validators determined by the ValidateChangedControls or UseValidationGroup
properties.

It defaults to true.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 66 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

When To Use The Control Properties
The Properties Editor shows these properties in the “When To Use” category.

o SetlnitialAppearance (Boolean) — Determines if the opposite settings are applied to the control to change when the
page is first loaded. When true, it applies the opposite settings. When False, you are responsible to set control to
change with the desired initial appearance.

It defaults to true.

e Enabled (Boolean) — If you have added the FSCOnCommand control to the page but need to disable it completely, set
this property to false. It defaults to true.

e Enabler (PeterBlum.DES.IBaseCondition) — There are times when a FSCOnCommand control should be disabled. For
example, your command button is a checkbox that should only apply attributes when the checkbox is marked. These

Enabler property is set to “None”, where it doesn’t disable the control. You can set it to any Condition, including those
you may create programmatically.

Consider these issues when using the Enabler:

0 Most Conditions have a property called EvaluateOnClickOrChange which defaults to true. Change it to
false when using it in an Enabler.

o0 Do not use this to detect a control whose Visible property is set to Fal se. Such a control does not create
HTML for the client-side to use. Instead, set the Enabled property to fal se when the control is invisible.

Select the Condttion to use

Condition |CheckStateCondition -

Evaluates CheckBoxes and RadioButtons to determine if the checked state matches
the Checked property.

Properties

Control DToEvaluate

E When to use
Enabled
EvaluateOnClickOrChange

Checked

The state of @ CheckBox or RadioButton’s Checked property desired for a true
resulting condition.

[ok | [cancel |

1.
2. Establish the properties in the Properties grid.
3. Reminder: Be sure to set EvaluateOnClickOrChange to false on all Conditions within the Enabler as shown.
4. Click OK.
Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 67 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

If you want to enter the Enabler property and its child properties into the web form using the HTML mode, there are
special considerations. The format is very unusual, in part because the .Net framework doesn’t support changing the
class of a property (polymorphism) without an interesting hack.

Here is the FSCOnCommand with the Enabler set to the CheckStateCondition.

<des:FSCOnCommand id="FSCOnCommandl"™ runat="'server"
Control IDToChange=""Spanl™ >

<EnablerContainer>
<des:CheckStateCondition ControlIDToEvaluate="CheckBox1""
EvaluateOnClickOrChange="false" >
</des:CheckStateCondition>
</EnablerContainer>

</des:FSCOnCommand >
Reminder: Be sure to set EvaluateOnClickOrChange to false on all Conditions within the Enabler as shown.

Notice that the Enabler property never appears in the attributes of the <des : FSCOnCommand> tag. (It will be added
when using the Properties Editor but it’s completely meaningless.) Instead, the <EnablerContainer> tag is a child
of the FSCOnCommand tag. That tag never has any attributes. The child to <EnablerContainer> defines the class

<des:classname [all properties] />

0 des:classname — Use any Condition class for the classname. If you create your own classes, you must declare
the namespace using the <% @REGISTER %> tag at the top of the page.

o [all properties] — Enter the properties into the tag the same way you do for any other control.

1. Create an instance of the desired Condition. There is a constructor that takes no parameters.

Note: There are also constructors that take parameters representing some of the control’s properties. Each
demands an ““owner” in the first parameter. That value must be the FieldStateController object.

2. Assign property values.
Reminder: Be sure to set EvaluateOnClickOrChange to false on all Conditions within the Enabler.
3. Assign the Condition object to the Enabler property.
In this example, add the CheckStateCondition, which is checking CheckBox1, to FSCOnCommand1.

[C#]

PeterBlum.DES.Web.WebControls.CheckStateCondition vCond =

new PeterBlum.DES.Web.WebControls.CheckStateCondition();
vCond.ControlToEvaluate = CheckBox1;
vCond.EvaluateOnClickOrChange = false;
FSCOnCommandl.Enabler = vCond;

[VB]
Dim vCond As PeterBlum.DES.Web.WebControls.CheckStateCondition = _
New PeterBlum.DES._Web._WebControls.CheckStateCondition()
vCond.ControlToEvaluate = CheckBox1

vCond.EvaluateOnClickOrChange = False
FSCOnCommandl.Enabler = vCond

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 68 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Behavior Properties
The Properties Editor shows these properties in the “Behavior” category.

INAJAXUpdate (Boolean) — When the page uses AJAX callbacks to add, update, or remove this control, set this to
true. It defaults to false.

In addition, if any of these properties identify a control that participates in the AJAX callback, set this to true:
0 ControllIDToRunThisAction and ControlToRunThisAction
o Controls in ControlConnections
0 Enabler. Look at the ControlIDToEvaluate and SecondControllIDToEvaluate.
0 ExtraControlsToRunThisAction.

Note: This is only needed for non-DES controls. DES controls will tell the FSCOnCommand control if their own
ISAJAXUpdate property is true.

See “Using These Controls with AJAX” in the General Features Guide.

UpdateWhileEditing (Boolean) — Determines if the FSCOnCommand is triggered as the user types into a textbox that is
specified in the ControlIDToRunThisAction property. By default, it does not and only triggers when focus leaves the
textbox. Set this to true to evaluate the FSCOnCommand with each keystroke.

It defaults to False.

SupportClientSideLookupByID (Boolean) - Allows JavaScript programmers to get to the client-side representation of
the FSCOnCommand object by the ClientID of the owner control.

Use the client-side function DES_FindAOBy l1d(ClientlD) to search for the “Action object” that matches the
ClientID you specify. That function will return nul I if not found.

Use the Action object to invoke the FSCOnCommand as if the user changed a field associated with it. Pass the Action
object to the client-side function DES_DoAction(action object).

Suppose you have a Button called Buttonl that will be used to invoke FSCOnCommandl. Here is how you set it up to
call InvokeFSC in Page_Load():

Buttonl._Attributes.Add("'onclick",
"InvokeFSC("" + FSCOnCommandl.ClientID + "");return false;")

When SupportClientSideLookupByID is true, two things happen:

1. The ID is written as a property, CID, into the control. (It isn’t written by default to avoid adding excess text to
the page.)

2. If the Enabled property is false, normally no code is written to the client side. This is overridden and code is
generated so users can toggle the Enabled property.
It defaults to False.

ViewStateMgr (PeterBlum.DES.Web.WebControls.ViewStateMgr) — Enhances the ViewState on this control to provide
more optimal storage and other benefits. Normally, the properties of this control and its segments are not preserved in the
ViewsState. When working in ASP.NET markup, define a pipe delimited string of properties in the PropertiesToTrack
property. When working in code, call ViewStateMgr . TrackProperty(*'propertyname'™) to save the
property. Individual segments have a similar method: TrackPropertyInViewState(*'propertyname’™).

For more details, see “The ViewState and Preserving Properties for PostBack” in the General Features User’s
Guide.

PropertiesToTrack (string) — A pipe delimited list of properties to track. Designed for use in markup and the properties
editor. The ViewState is not automatically used by most of these properties. To include a property, add it to this pipe
delimited list.

For example, "Group|MayMoveOnClick™.
When working programmatically, use ViewStateMgr.TrackProperty("PropertyName").

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 69 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

CalculationController

The CalculationController lets you create a calculation involving IntegerTextBox, DecimalTextBox, CurrencyTextBox, and

The CalculationController has a powerful expression building tool. You can include constants, subexpressions, and IF
statement logic based on Conditions. You can even provide your own custom functions for more advanced calculations.

The CalculationController itself does not generate any HTML. It creates javascript that monitors edits made to textboxes and
displays results in another control, such as a Label or DecimalTextBox. So you can drop it anywhere on the page. It provides
support both on the client and server side. So after post back, Validators can still evaluate themselves against this control and
your own code can extract the calculation result.

Click on any of these topics to jump to them:

¢ Features

® Creating the Expression: The Calcltem classes

® Displaying The Result

® Using the Result in Validators and Conditions

® Using the Result in Your Server-Side Code

® JavaScript: Running CalculationControllers. On_.Demand

® Properties Common To All Calcltem Classes

® Properties for the PeterBlum.DES.Web.WebControls.NumericTextBoxCalcltem_Class

® Properties for the PeterBlum.DES.Web.WebControls.ListConstantsCalcltem Class

® Adding Custom Code to a Calcltem

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 70 of 309

http://www.peterblum.com/des/support.aspx�
http://learningdes.peterblum.com/InteractivePages/Menu.aspx?Topic=Calc�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Features

The CalculationController lets you describe calculations that involve numbers in textboxes, constants and other logic. The
values from these calculations can be used in the following ways:

e Displayed on the page, whether in a Label or a textbox.

e Validators that compare numbers can evaluate the value simply by setting their ControllDToEvaluate property to this
control’s ID. Supported validators include: CompareToValueValidator, CompareTwoFieldsValidator, RangeValidator,
and DifferenceValidator. In addition, the RequiredTextValidator can determine if the calculation had an error.

Conditions. Now those Conditions can enable their control based on the result of a calculation.

e The calculations can include the values of other CalculationControllers on the page. This allows reuse of a common
calculation, reducing the size of the client-side code and slightly improving performance by reducing the number of
times the code executes a calculation.

While it is typical to add together the values of textboxes to form a total, the CalculationController can handle far more
powerful expressions. Here are the elements that you can use to develop your expressions:

e Use these textboxes: IntegerTextBox, DecimalTextBox, CurrencyTextBox, and PercentTextBox.

e Lists, DropDownL.ists, RadioButtonLists, and CheckBoxLists can have numeric values assigned to each selectable
element that are used when selected.

e Checkboxes and RadioButtons can have numeric values for their checked and uncheck states.
e Constants (numbers)

e Subexpressions which are the same idea as putting parenthesis around an expression to have it calculate together.

if the Condition evaluates as “failed”. This allows your expression to have different logic based on the settings on the
screen. Basically, you are developing “IF” statements.

Since the CompareToValueCondition and RangeCondition now can evaluate the values of CalculationControllers, your
IF statements can be decided by calculations too.

e Each element — textbox, constant, subexpression, and “IF” statement — can use these operators: add, subtract, multiply,
and divide.

Here is an example of two CalculationControllers on a page, using the image shown in design mode. They refer to three
controls: two DecimalTextBoxes and a CheckBox. The DecimalTextBoxes are used for the calculation. The CheckBox is
used for the Condition object (a CheckStateCondition):

13}
+x CalculationCaontrollert: IF [CheckBox1 is checked 1 THEM CalculationController2 ELSE DecimalTextBox1 - Decimal TextBox2

13]
+x- CalculstionController2: DecimalTextBox1 + DecimalTextBox2

To further refine your expressions, the CalculationController has these features:

e The result, which is initially a decimal value, can be rounded in several ways. It can round to a certain number of
decimal places and use different rounding rules.

e For blank textboxes, you can determine if it’s an error or treated as 0.

e You can supply client- and server-side functions that let you customize the result of any element. For example, if you
want the value of a textbox to be run through the Sin() function, you write a function to use that calculation. The
CalculationController will pass you the value. Your function can report an error for an illegal value and correct errors.

e It gracefully handles errors, such as divide by zero.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 71 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Using the CalculationController

There are several aspects to using this control:

e Create a mathematical expression in the Expression property.

e Optionally display the result of the calculation. There are formatting rules to consider.
e Optionally let a Validator evaluate the result of the calculation.

e Optionally use the result of the calculation in your own code.

o Display a different number based on a selection in a list, DropDownL.ist, or RadioButtonList.

Click on any of these topics to jump to them:

4 Creating the Expression: The Calcltem classes

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 72 of 309

http://www.peterblum.com/des/support.aspx�
http://learningdes.peterblum.com/InteractivePages/Menu.aspx?Topic=Calc�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Creating the Expression: The Calcltem classes

The calculation is created within the Expression property on the CalculationController. This property is a collection which
holds a list of the following objects.

Click on any of these topics to jump to them:

PeterBlum.DES.Web.WebControls.NumericTextBoxCalcltem

A R R R R A
g
!
@
@
c
3
o
m
%
=
D
o
3
@D
o
0
o
=
S
0
0
2
D
=
>
@
0}
w0
0
8
S
@
3

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 73 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

PeterBlum.DES.Web.WebControls.NumericTextBoxCalcltem

Identifies one IntegerTextBox, DecimalTextBox, CurrencyTextBox, or PercentTextBox that supplies a number into the
calculation. Usually your calculation will have one or more of these. The TextBox will be set up so that any time it changes
(after focus is lost), the calculation will run.

Note: If you are totaling a column of numeric textboxes in a ListView, GridView, DataL ist, or Repeater, consider using the

Expression: (IntegerTextBox1 + IntegerTextBox2)
The Expression property contains:
NumericTextBoxCalcltemfor IntegerTextBoxl

NumericTextBoxCalcltem for IntegerTextBox2 with Operator = Add (which is the default value for that
property)
The result is shown in a Label control called Labell.

<des:CalculationController id="CalculationControllerl” runat="server"
ShowValueControl ID=""Labell" >
<Expression>
<des:NumericTextBoxCalcltem TextBoxControlID="IntegerTextBox1" />
<des:NumericTextBoxCalcltem TextBoxControlID="IntegerTextBox2" />
</Expression>
</des:CalculationController>

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 74 of 309

http://www.peterblum.com/des/support.aspx�
http://learningdes.peterblum.com/InteractivePages/CalculationController/Basic%20Examples.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

PeterBlum.DES.Web.WebControls.ConstantCalcltem

Expression: (IntegerTextBox1 + IntegerTextBox2) * 25
The Expression property contains:

NumericTextBoxCalcltem for IntegerTextBoxl

NumericTextBoxCalcltem for IntegerTextBox2 with Operator = Add (which is the default value for that
property)

ConstantCalcltem for 25 with Operator = Multiply
The result is shown in a Label control called Labell.

<des:CalculationController id="CalculationControllerl” runat="server"
ShowValueControl ID="Labell" >
<Expression>
<des:NumericTextBoxCalcltem TextBoxControlID="IntegerTextBox1" />
<des:NumericTextBoxCalcltem TextBoxControlID=""IntegerTextBox2" />
<des:ConstantCalcltem Constant="25" Operator="Multiply" />
</Expression>
</des:CalculationController>

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 75 of 309

http://www.peterblum.com/des/support.aspx�
http://learningdes.peterblum.com/InteractivePages/CalculationController/Basic%20Examples.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

PeterBlum.DES.Web.WebControls.ListConstantsCalcltem

Associate the items in a ListBox or DropDownList with constants. As the user changes the list’s selection, the calculation
gets a different constant. For example, when SelectedIndex is 0, the value is 25 and when Selectedindex is 1 through 4, the
value is 30.

SelectedIndexes that are associated with a specific value.

You can make a selected index report an error to the CalculationController. You can also define a default number when an
index is selected but has no matching item in the ConstantsForSelectedIndexes property.

Expression: (value from the selected item in ListBox1) * 25
The Expression property contains:
ListConstantsCalcltem for ListBox1 where index 0 is 5, indices 1 and 2 are 10, and index 3 is 25.

ConstantCalcltem for 25 with Operator = Multiply

The result is shown in a Label control called Labell

<des:CalculationController id="CalculationControllerl”™ runat="server"
ShowValueControl ID=""Label1™ >
<Expression>
<des:ListConstantsCalcltem ListControlID="ListBox1"™ />
<ConstantsForSelectedIndexes>
<des:ConstantForSelectedIndex Startindex="0" Constant="5" />
<des:ConstantForSelectedIndex Startindex="1" EndIndex="2"
Constant="10" />
<des:ConstantForSelectedIndex Startlndex="3" Constant="25" />
</ConstantsForSelectedlndexes>
</des:ListConstantsCalcltem>
<des:ConstantCalcltem Constant="25" Operator="Multiply" />
</EXpression>
</des:CalculationController>

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 76 of 309

http://www.peterblum.com/des/support.aspx�
http://learningdes.peterblum.com/InteractivePages/CalculationController/Basic%20Examples.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

PeterBlum.DES.Web.WebControls.CheckStateCalcltem

Associated two values with a CheckBox or RadioButton, where one value is used when its checked and the other when it
isn’t. It can be used with CheckBoxL.ist and RadioButtonL.ist controls so long as you identify a specific button in the list by
its index.

One common usage is to add a series of checkboxes that are checked and ignore those that are not checked. To do this,
include a CheckStateCalcltem object for every checkbox, adding them together. Since this class also returns a value for the
unchecked state, usually you use ValueWhenUnchecked = 0 when adding or subtracting. You use ValueWhenUnchecked
= 1 when multiplying or dividing. You can use the same technique with a list of RadioButtons to determine a value for the
one that is checked.

Suppose there are 3 radiobuttons grouped together and each has its own value. This determines the value of the selected one
by evaluating all 3 and adding their values together. Those that are unchecked have a value of O (from their
ValueWhenUnchecked property which defaults to 0.)

The Expression property contains:
CheckStateCalcltem for RadioButtonl with a value of 10 when checked and 0 when unchecked.
CheckStateCalcltem for RadioButton2 with a value of 20 when checked and 0 when unchecked.
CheckStateCalcltem for RadioButton3 with a value of 30 when checked and 0 when unchecked.

The result is shown in a Label control called Labell.

<des:CalculationController id="CalculationControllerl™ runat="server"
ShowValueControl ID="Labell" >
<Expression>
<des:CheckStateCalcltem CheckStateControllD="RadioButtonl"’
ValueWhenChecked="10" />
<des:CheckStateCalcltem CheckStateControl ID="RadioButton2"
ValueWhenChecked="20" />
<des:CheckStateCalcltem CheckStateControlID=""RadioButton3"
ValueWhenChecked="30" />
</Expression>
</des:CalculationController>

EXAMPLES CONTINUE ON THE NEXT PAGE

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 77 of 309

http://www.peterblum.com/des/support.aspx�
http://learningdes.peterblum.com/InteractivePages/CalculationController/Basic%20Examples.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Suppose there is a CheckBoxList where each checkbox has a numeric value. This determines the sum of all checked buttons
by evaluating all 3 and adding their values together. Those that are unchecked have a value of 0 (from their
ValueWhenUnchecked property which defaults to 0.)

The Expression property contains:
CheckStateCalcltem for CheckBoxListl at index 0 with a value of 10 when checked and 0 when unchecked.
CheckStateCalcltem for CheckBoxListl at index 1 with a value of 20 when checked and 0 when unchecked
CheckStateCalcltem for CheckBoxListl at index 2 with a value of 30 when checked and 0 when unchecked
The result is shown in a Label control called Labell.

<des:CalculationController id="CalculationControllerl™ runat="server"
ShowValueControl ID=""Labell" >
<Expression>
<des:CheckStateCalcltem CheckStateControl ID="CheckBoxListl1"
Index=""0" ValueWhenChecked="10" />
<des:CheckStateCalcltem CheckStateControl ID=""CheckBoxListl""
Index=""1" ValueWhenChecked="'20" />
<des:CheckStateCalcltem CheckStateControlID=""CheckBoxListl"
Index=""2" ValueWhenChecked="'30" />
</Expression>
</des:CalculationController>

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 78 of 309

http://www.peterblum.com/des/support.aspx�
http://www.peterblum.com/des/order.aspx�
http://www.peterblum.com/des/orderpagemarkup.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

PeterBlum.DES.Web.WebControls.ParenthesisCalcltem

Expression: (DecimalTextBox1 + DecimalTextBox2) * 25
The Expression property contains:
ParenthesisCalcltem with its own expression that adds the two textboxes like this:
NumericTextBoxCalcltem for IntegerTextBox1

NumericTextBoxCalcltem for IntegerTextBox2 with Operator = Add (which is the default value for
that property)

ConstantCalcltem for 25 with Operator = Multiply

The result is shown in a Label control called Labell.

<des:CalculationController id="CalculationControllerl™ runat="server">
<Expression>
<des:ParenthesisCalcltem>
<Expression>
<des:NumericTextBoxCalcltem TextBoxControl ID="DecimalTextBox1l" />
<des:NumericTextBoxCalcltem TextBoxControl ID="DecimalTextBox2" />
</Expression>
</des:ParenthesisCalcltem>
<des:ConstantCalcltem Constant="25" Operator="Multiply" />
</Expression>
</des:CalculationController>

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 79 of 309

http://www.peterblum.com/des/support.aspx�
http://learningdes.peterblum.com/InteractivePages/CalculationController/Basic%20Examples.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

PeterBlum.DES.Web.WebControls.ConditionCalcltem

Suppose you have 4 IntegerTextBoxes. You want a CheckBox to determine whether to add only two or all four of them. Use
a CheckStateCondition pointing to the CheckBox in the Condition property. ExpressionWhenTrue contains four
NumericTextBoxCalcltem objects. ExpressionWhenFalse contains two NumericTextBoxCalcltem objects. The expression
would look like this:

Expression: IF (CheckBox1.Checked = True) THEN
(TextBoxl + TextBox2 + TextBox3 + TextBox4) ELSE (TextBoxl + TextBox2)

The result is shown in a Label control called Labell.

<des:CalculationController id="CalculationControllerl™ runat="server">
<Expression>
<des:ConditionCalcltem>

<ConditionContainer>
<des:CheckStateCondition ControllDToEvaluate="CheckBox1" />
</ConditionContainer>

<ExpressionWhenTrue>
<des:NumericTextBoxCalcltem TextBoxControlID="IntegerTextBox1"™ />
<des:NumericTextBoxCalcltem TextBoxControlID="IntegerTextBox2" />
<des:NumericTextBoxCalcltem TextBoxControllID="IntegerTextBox3" />
<des:NumericTextBoxCalcltem TextBoxControlID=""IntegerTextBox4" />
</ExpressionWhenTrue>

<ExpressionWhenFalse>
<des:NumericTextBoxCalcltem TextBoxControllID="IntegerTextBox1" />
<des:NumericTextBoxCalcltem TextBoxControlID="IntegerTextBox2" />
</ExpressionWhenFalse>

</des:ConditionCalcltem>
</Expression>
</des:CalculationController>

EXAMPLES CONTINUE ON THE NEXT PAGE

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 80 of 309

http://www.peterblum.com/des/support.aspx�
http://learningdes.peterblum.com/InteractivePages/CalculationController/Basic%20Examples.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

You have a screen with shipping charges determined by a DropDownL.ist. Use SelectedindexCondition to evaluate which
index is selected in the DropDownL.ist in the Condition property. The ExpressionWhenTrue property will have a
ConstantCalcltem for shipping charges of the index selected. The ExpressionWhenFalse property will have another
ConditionCalcltemto compare another index. The expression would look like this:

Expression: IF (ShippingCharges.Selectedlndex = 0) THEN 3.50 ELSE 6.00

<des:CalculationController id="CalculationControllerl™ runat="server'>
<Expression>
<des:ConditionCalcltem>

<ConditionContainer>
<des:SelectedIndexCondition ControlIDToEvaluate="ShippingCharges"
Index="0" />
</ConditionContainer>

<ExpressionWhenTrue>
<des:ConstantCalcltem Constant="3.5"/>
</ExpressionWhenTrue>

<ExpressionWhenFalse>
<des:ConstantCalcltem Constant="6.0"/>
</ExpressionWhenFalse>

</des:ConditionCalcltem>
</Expression>
</des:CalculationController>

Test the total of 2 textboxes are within the range of 0 to 100. If they are in that range, use that value. Otherwise, use 0. To do
this, you create a second CalculationController that totals the textboxes and use a RangeCondition to evaluate that second
CalculationController is within the range:

Expression: 1F (CalculationController2 is between 0 and 100) THEN
(use CalculationController2’s value) ELSE (0)

<des:CalculationController id="CalculationControllerl” runat="server'>
<Expression>
<des:ConditionCalcltem>

<ConditionContainer>
<des:RangeCondition ControlIDToEvaluate="CalculationController2"
MInimum="0" Maximum="100" />
</ConditionContainer>
<ExpressionWhenTrue>
<des:CalcControllerCalcltem ControlID="CalculationController2"/>
</ExpressionWhenTrue>
<ExpressionWhenFalse>
<des:ConstantCalcltem Constant="0"/>
</ExpressionWhenFalse>

</des:ConditionCalcltem>
</Expression>
</des:CalculationController>

<des:CalculationController id="CalculationController2"™ runat="server">
<Expression>
<des:NumericTextBoxCalcltem TextBoxControlID="DecimalTextBox1l" />
<des:NumericTextBoxCalcltem TextBoxControl ID="DecimalTextBox2" />
</Expression>
</des:CalculationController>

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 81 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

PeterBlum.DES.Web.WebControls.CalcControllerCalcltem

Use another CalculationController for a part of the calculation. While you can reproduce a calculation several times in an
expression, programmers prefer to write functions to encapsulate code that is reused. This has several benefits here:

e When using a ConditionCalcltem, you might want a Condition to look at the value of a calculation. You use the
technique described above in the third example of ConditionCalcltem to create a second CalculationController.
You reuse the value of the second CalculationController within this CalculationController with a

CalcControllerCalcltem:

IF (CalculationController2 is between 0 and 100) THEN
(CalculationController2) ELSE (0)

e Less JavaScript is generated, reducing the size of the page. While each CalculationController doesn’t generate much
JavaScript, this is an optimization.

e Less JavaScript is executed because the CalculationController is run once for each request. This is a speed optimization.

Test the total of 2 textboxes are within the range of 0 to 100. If they are in that range, use that value. Otherwise, use 0. To do
this, you create a second CalculationController that totals the textboxes and use a RangeCondition to evaluate that second
CalculationController is within the range:

Expression: 1F (CalculationController2 is between 0 and 100) THEN
(use CalculationController2’s value) ELSE (0)

<des:CalculationController id="CalculationControllerl™ runat="server">
<Expression>
<des:ConditionCalcltem>

<ConditionContainer>
<des:RangeCondition ControlIDToEvaluate=""CalculationController2"
MEinimum="0"" Maximum="100" />
</ConditionContainer>
<ExpressionWhenTrue>
<des:CalcControllerCalcltem ControllID="CalculationController2"/>
</ExpressionWhenTrue>
<ExpressionWhenFalse>
<des:ConstantCalcltem Constant="0"/>
</ExpressionWhenFalse>

</des:ConditionCalcltem>
</Expression>
</des:CalculationController>

<des:CalculationController i1d="CalculationController2" runat="server'>
<Expression>
<des:NumericTextBoxCalcltem TextBoxControllD="DecimalTextBox1" />
<des:NumericTextBoxCalcltem TextBoxControlID="DecimalTextBox2" />
</Expression>
</des:CalculationController>

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 82 of 309

http://www.peterblum.com/des/support.aspx�
http://learningdes.peterblum.com/InteractivePages/CalculationController/Basic%20Examples.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

PeterBlum.DES.Web.WebControls.TotalingCalcltem

Totals a column of a ListView, GridView, DatalL ist, and Repeater control. It needs to know of a control within that column,
either a numeric textbox like IntegerTextBox or another CalculationController, which is hosting a value specific to that row.

TotalingCalcltem is effectively creating a ParenthesisCalcltem with NumericTextBoxCalcltems or CalcControllerCalcltems.
You could do the same but with more work, involving adding an event handler to your list or grid control where you find the
control in the row, create the Calcltem object and add it to the ParenthesisCalcltem

When using a paged list, the rows shown create a sub total. If you want to calculate based on the grand total of all rows, you
need to modify the values created by TotalingCalcltem to include the actual grand total minus the page’s subtotal. The

ALERT:When using DES Dynamic Data, substitute the DataFieldTotalingCalcltem object for TotalingCalcltem. Replace
ControlIDToRow with DataField identifying the column name.

Expression: Sum of IntegerTextBox1 in the ListView control.
The result is shown in a Label control called Labell.

<asp:ListView id="ListViewl" runat="'server'>
<ltemTemplate>
<des:IntegerTextBox id=""IntegerTextBox1l" runat="'server" />
</ltemTemplate>
</asp:ListView>
<des:CalculationController id="CalculationControllerl™ runat="server"
ShowValueControl ID=""Labell" >
<Expression>
<des:TotalingCalcltem ListControlID="ListViewl"
Control IDToRow=""IntegerTextBox1" />
</Expression>
</des:CalculationController>

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 83 of 309

http://www.peterblum.com/des/support.aspx�
http://learningdes.peterblum.com/InteractivePages/CalculationController/TotallingCalcItem.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

PeterBlum.DES.BLD.DataFieldTotalingCalcltem

This feature only applies when using Peter’s Business Driven Logic Ul (“BLD™). It replaces the
PeterBlum.DES.Web.WebControls.TotalingCalcltem class.

Totals a column of a BLDListView control. It needs to know of a data field column name whose value will be totalled.

Expression: Sum of the Price column. The BLDL istView is using automatic scaffolding here, so no data fields are listed.
The result is shown in a Label control called Labell.

<des:BLDListView 1d="BLDListViewl" runat="'server"
PatternTemplateName="GridView" >
</des:BLDListView>

<des:CalculationController id="CalculationControllerl”™ runat="server"
ShowValueControl ID=""Labell" >
<Expression>
<des:DataFieldTotalingCalcltem ListControlID="BLDListViewl"
DataField="Price" />
</EXxpression>
</des:CalculationController>

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 84 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

General Guidelines for Calcltem objects
Each of the “Calcltem” objects described above provide an operator to add, subtract, multiply, and divide by the previous

generally always use the Add operator.

The result of the expression may need to be rounded to an integer or a specific number of decimal places. Use the

to choose from.

Each Calcltem object allows you to define custom code to take the numeric value of the Calcltem object and further process
it. You can change the value, return the original value, return a value when the Calcltem object reported an error, or indicate

CustomCalculation property for the server-side code.

The DES Ordering page uses several CalculationControllers that evaluate radiobuttons, checkboxes, and an IntegerTextBox
to determine the subtotal of your order and the per-unit value. It uses NumericTextBoxCalcltem, CheckStateCalcltem,
ParenthesisCalcltem, and ConditionCalcltem objects.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 85 of 309

http://www.peterblum.com/des/support.aspx�
http://www.peterblum.com/des/order.aspx�
http://www.peterblum.com/des/orderpagemarkup.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Displaying The Result

You can display the result in any of these types of controls: Label, LocalizableLabel, IntegerTextBox, DecimalTextBox, and

example, an IntegerTextBox has 0 decimal places.
When displaying the result in a Label or LocalizableLabel, you have many formatting properties:

e Use the DecimalPlaces property to determine the number of decimal places.

o If you want to show thousands separators, set LabelFormatThousandsSep to true.

e If you want to show a currency symbol, set LabelFormatCurrencySymbol to true.

e You can either replace the entire text of the Label or replace a token. When using a token, you can have a sentence, like
“The result is {TOKEN}”. When using Tokens, multiple CalculationControllers can have their tokens in the same label.

numeric TextBox. For example, you might set InvalidValueLabel to “0.00” or “-.--”. If InvalidValueLabel is blank, the
control will be blanked. Additionally, you can change the style sheet class name if you assign a new class to
InvalidValueCssClass.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 86 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Using the Result in Validators and Conditions

/M Online example

property to the ID of the CalculationController: RequiredTextValidator, CompareToValueValidator,
CompareTwoFieldsValidator, RangeValidator, and DifferenceValidator. The RequiredTextValidator detects errors because
the CalculationController returns an empty string when there is an error.

calculation. The MultiConditionValidator, CountTrueConditionsValidator, FieldStateController.Condition, and all other
cases can evaluate CalculationControllers too.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 87 of 309

http://www.peterblum.com/des/support.aspx�
http://learningdes.peterblum.com/InteractivePages/CalculationController/Validation.aspx�

PETERS INTERACTIVE PAGES

A moouLe oF PETERS OATA ENTRY SUITEVS

Using the Result in Your Server-Side Code

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved

Page 88 of 309
Technical support and other assistance: http://www.peterblum.com/des/support.aspx

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

JavaScript: Running CalculationControllers On Demand
DES provides methods and functions to run calculations on demand, both on the client and server side. On the server side,

whenever you use the CalculationController:

e DES CalcAll() - Runs all CalculationControllers on the page. They will update their controls to display.
DES CalcAll();

e DES_CalcOne(1D) - Runs the calculation for the CalculationController supplied by its ID and returns the result. It
does not update the value on the control to display.

The ID parameter must be the ClientID of the CalculationController.

It returns a decimal value or NaN. NaN is a special JavaScript symbol representing “not a number”. Here it means
the calculation failed. To test for NaN, JavaScript provides the function IsNaN(value). It returns true if the
value passed in is NaN.

var vResult = DES CalcOne("CalculationControllerli®);
it (MIsNaN(vResult)) // it’s a valid decimal number
// use vResult

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 89 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Adding the CalculationController Control

e O

These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. Prepare the page for DES controls. See “Preparing a page for DES controls” in the General Features Guide. It covers
issues like style sheets, AJAX, and localization.

2. Start by setting up all the Controls involved. Make sure the TextBoxes are IntegerTextBox, DecimalTextBox,
CurrencyTextBox, or PercentTextBox. If you are using any conditional logic, be sure that controls that determine that
logic are present too, like CheckBoxes and DropDownL.ists.

3. Add the CalculationController control to the page. Its location does not matter as it contributes no HTML to the page.
Visual Studio and Visual Web Developer Design Mode Users
Drag the CalculationController control from the Toolbox onto your web form. It will look like this:

B,

x CalculationCortraller?: [Mat defined]

Text Entry Users

Add the control (inside the <form> area):
<des:CalculationController id="[YourControllID]" runat="'server" >
</des:CalculationController>

Programmatically Creating the Control

o ldentify the control which you will add the CalculationController control to its Controls collection. Like all
ASP.NET controls, the CalculationController control can be added to any control that supports child controls, like
Panel, User Control, or TableCell. If you want to add it directly to the Page, first add a PlaceHolder and use the
PlaceHolder.

e Create an instance of the CalculationController control class. The constructor takes no parameters.

e Assign the ID property.

e Add the CalculationController control to the Controls collection.

In this example, the CalculationController control is created with an 1D of “CalculationControllerl”. It is added to

PlaceHolder1.

[C#]

PeterBlum.DES._Web._WebControls.CalculationController vCalc =
new PeterBlum.DES.Web.WebControls.CalculationController();

vCalc.ID = "CalculationControllerl™;

PlaceHolderl_Controls_Add(vCalc);

[VB]

Dim vCalc As PeterBlum.DES.Web.WebControls.CalculationController = _
New PeterBlum.DES.Web.WebControls.CalculationController()

vCalc.I1D = "CalculationControllerl"

PlaceHolderl_Controls._Add(vCalc)

4. Write down your expression. For example, “(TextBox1 + TextBox2) * 25”. This will guide you as you build it in the
CalculationController.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 90 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

5.

8.

Guidelines for setting properties
e Design mode users can use the Properties Editor or the Expanded Properties Editor. (See “Expanded Properties
Editor” in the General Features Guide.) The SmartTag ™ also offers some of the most important properties.

e Text entry users should add the properties into the <des:ControlClass> tag in this format:
propertyname="value"

e When setting a property programmatically, have a reference to the control’s object and set the property according to
your language’s rules.

(Each topic includes examples.)

L 4

PeterBlum.DES.Web.WebControls.NumericTextBoxCalcltem

¢ ¢ ¢ ¢ ¢ o o o
T
o8
@
w
c
3
o
m
»
s
)
S
s
D
O
o)
o
=
8
@
0
o
>
=3
=3
>
)
)
S
@
3

properties to customize the appearance of that control when there is a calculation error.

If you want to validate the value, add the appropriate Validator control. You can choose from RequiredTextValidator,
CompareToValueValidator, CompareTwoFieldsValidator, RangeValidator and DifferenceValidator. The
RequiredTextValidator can report when there was a calculation error. See the Validation User’s Guide for details on
the Validators.

Here are some other considerations:

e Ifyou are using an AJAX system to update this control, set the INAJAXUpdate property to true. Also make sure
the PageManager control or AJAXManager object has been setup for AJAX. See “Using these Controls With
AJAX” in the General Features Guide. Failure to follow these directions can result in incorrect behavior and
javascript errors.

e This control does not preserve most of its properties in the ViewState, to limit its impact on the page. If you need to
use the ViewState to retain the value of a property, see “The ViewState and Preserving Properties for PostBack” in
the General Features Guide.

e See also “Additional Topics for Using These Controls”.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 91 of 309

http://www.peterblum.com/des/support.aspx�
http://learningdes.peterblum.com/InteractivePages/Menu.aspx?Topic=Calc�

PETERS INTERACTIVE PAGES

A moouLe oF PETERS OATA ENTRY SUITEVS

Properties on CalculationController

Click on any of these topics to jump to them:

4 Calculating The Value Properties

® & o o
>
(0]
>
5]
C
(%2}
D
=
(]
Q)
o
>
=
=}
o
=
o
o
()
=
(0]
(%2

® Properties Common To All Calcltem_Classes

® Properties for the PeterBlum.DES.Web.WebControls.NumericTextBoxCalcltem Class

® Properties for the PeterBlum.DES.Web.WebControls.ListConstantsCalcltem Class

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved

Page 92 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Calculating The Value Properties
The Properties Editor shows these properties in the “Calculation” category.

e Expression (PeterBlum.DES.BaseCalcExpression) — A list of Calcltem objects that define the calculation expression.

The Properties Editor for the Expression property provides a window where you can select Calcltem objects and
establish their properties.

NumericTextBoxCalcltem Collection Editor (-2)
Members: Add TextBox: IntegerTextBoxd properties:
] Add TextBox: IntegerTextBox1 = =
1| Add TextBox: IntegerTextBox2 4 Behavior
BlanklsZero True
CustomCalcFun
Enabled True
InvalidlsZero True
4 Calculation
Operator Add
TextBoxControlll IntegerTextBox1
4 Misc
D
BlanklsZero
Determines if an blank value is in the
Add Y] [Remove textbox. When true, it uses 0, When false,...
OK l [Cancel l

e The Add button contains a list the Calcltem classes. Select one to add to the end of the current list.
e Establish the properties in the Properties grid.

e When you see the following properties, they open to their own copy of the same Properties Editor: Expression,
ExpressionWhenTrue, and ExpressionWhenFalse.

e Click OK.

You add the Expression as child of the <Expression> tag.
The following example represents expression (IntegerTextBox1 + IntegerTextBox2) * 25:

<des:CalculationController id="CalculationControllerl” runat="server'>
<Expression>
<des:ParenthesisCalcltem>
<Expression>
<des:NumericTextBoxCalcltem TextBoxControl ID="IntegerTextBox1" />
<des:NumericTextBoxCalcltem TextBoxControllD="IntegerTextBox2" />
</Expression>
</des:ParenthesisCalcltem>
<des:ConstantCalcltem Constant="25" Operator="Multiply" />
</Expression>
</des:CalculationController>

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 93 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

The following example represents expression DecimalTextBox1 + DecimalTextBox2 - If (CheckBox1 is checked)
THEN DecimalTextBox3 ELSE 0:

<des:CalculationController id="CalculationController2"™ runat="server">
<Expression>
<des:NumericTextBoxCalcltem TextBoxControl ID="DecimalTextBox1'>
</des:NumericTextBoxCalcltem>
<des:NumericTextBoxCalcltem TextBoxControl ID="DecimalTextBox2'>
</des:NumericTextBoxCalcltem>
<des:ConditionCalcltem Operator="Subtract">

<ConditionContainer>
<des:CheckStateCondition ControllDToEvaluate="CheckBox1l" >
</des:CheckStateCondition>

</ConditionContainer>

<ExpressionWhenTrue>
<des:NumericTextBoxCalcltem TextBoxControlID="DecimalTextBox1'>
</des:NumericTextBoxCalcltem>

</ExpressionWhenTrue>

<ExpressionWhenFalse>
<des:ConstantCalcltem Constant="0">
</des:ConstantCalcltem>

</ExpressionWhenFalse>

</des:ConditionCalcltem>
</EXpression>
</des:CalculationController>

Notice that the ConditionCalcltem.Condition property name never appears in the attributes of the
<des:ConditionCalcltem> tag. (It will be added when using the Properties Editor but it’s completely
meaningless.) Instead, the <ConditionContainer> tag is a child of the ConditionCalcltem control tag. That tag has

<des:classname[all properties] />

e des:classname — Use any Condition class for the classname. If you create your own classes, you must declare the
namespace using the <% @REGISTER %> tag at the top of the page.

o [all properties] — Enter the properties into the tag the same way you do for any other control.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 94 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Here are the steps to set the Expression.

Create an instance of the desired Calcltem. Here are the available constructors shown with property names in the
parameters.

NumericTextBoxCalcltem()
NumericTextBoxCalcltem(Operator)
NumericTextBoxCalcltem(Operator, TextBoxControllD)
NumericTextBoxCalcltem(Operator, TextBoxlnstance)

ConstantCalcltem()
ConstantCalcltem(Operator)
ConstantCalcltem(Operator, Constant)

ListConstantsCalcltem()
ListConstantsCalcltem(Operator)
ListConstantsCalcltem(Operator, ListControllD)
ListConstantsCalcltem(Operator, ListInstance)

CheckStateCalcltem(Q)
CheckStateCalcltem(Operator)
CheckStateCalcltem(Operator, CheckStateControllD, ValueWhenChecked)
CheckStateCalcltem(Operator, CheckStatelnstance, ValueWhenChecked)
CheckStateCalcltem(Operator, CheckStateControllD,
ValueWhenChecked, ValueWhenUnchecked)
CheckStateCalcltem(Operator, CheckStatelnstance,
ValueWhenChecked, ValueWhenUnchecked)
CheckStateCalcltem(Operator, CheckStateControllD, Index, ValueWhenChecked)
CheckStateCalcltem(Operator, CheckStatelnstance, Index, ValueWhenChecked)
CheckStateCalcltem(Operator, CheckStateControllD, Index,
ValueWhenChecked, ValueWhenUnchecked)
CheckStateCalcltem(Operator, CheckStatelnstance, Index,
ValueWhenChecked, ValueWhenUnchecked)

ParenthesisCalcltem()
ParenthesisCalcltem(Operator)

ConditionCalcltem()
ConditionCalcltem(Operator)
ConditionCalcltem(Operator, Condition)

CalcControllerCalcltem()
CalcControllerCalcltem(Operator)
CalcControllerCalcltem(Operator, ControllD)
CalcControllerCalcltem(Operator, ControlInstance)

TotalingCalcltem()

TotalingCalcltem(Operator)

TotalingCalcltem(Operator, ListControllD)
TotalingCalcltem(Operator, Listlnstance)
TotalingCalcltem(Operator, ListControllD, ControlIDInRow)
TotalingCalcltem(Operator, Listlnstance, ControllDInRow)

Assign property values. For ParenthesisCalcltem, fill in its Expression property using these same steps. For
ConditionCalclten,fill in its ExpressionWhenTrue and Expression\WhenFalse properties using these same
steps.

Assign the Calcltem object to the Expression property by passing it to the Add () method.
AN EXAMPLE FOLLOWS

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 95 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

The following example represents expression (DecimalTextBox1 + DecimalTextBox2) * 25:
[C#]

PeterBlum.DES._Web._WebControls.ParenthesisCalcltem vSubExpl =
new PeterBlum.DES._Web._WebControls.ParenthesisCalcltem();
// DecimalTextBox1l inside the parenthesis
PeterBlum.DES._Web._WebControls._.NumericTextBoxCalcltem vDTB1 =
new PeterBlum.DES.Web.WebControls.NumericTextBoxCalcltem(
PeterBlum.DES.CalcOperator.Add, DecimalTextBox1);
VSUbExpl.Expression.Add(vDTB1);
// DecimalTextBox2 inside the parenthesis
PeterBlum.DES._Web._WebControls._NumericTextBoxCalcltem vDTB2 =
new PeterBlum.DES.Web.WebControls.NumericTextBoxCalcltem(
PeterBlum.DES.CalcOperator.Add, DecimalTextBox2);
VSUbExpl.Expression.Add(vDTB2);
CalculationControllerl_Expression.Add(vSubExpl);
// Constant * 25
PeterBlum.DES._Web._WebControls.ConstantCalcltem vConst =
new PeterBlum.DES_Web.WebControls.ConstantCalcltem(
PeterBlum.DES.CalcOperator _Multiply, 25.0);
CalculationControllerl_Expression.Add(vConst);

[VB]

Dim vSubExpl As PeterBlum.DES.Web.WebControls.ParenthesisCalcltem
New PeterBlum.DES.Web.WebControls.ParenthesisCalcltem()
" DecimalTextBox1l inside the parenthesis
Dim vDTB1 As PeterBlum.DES.Web.WebControls.NumericTextBoxCalcltem
New PeterBlum.DES._Web._WebControls._NumericTextBoxCalcltem(_
PeterBlum.DES.CalcOperator.Add, DecimalTextBoxl)
VvSubExpl.Expression.Add(vDTB1)
" DecimalTextBox2 inside the parenthesis
Dim vDTB2 As PeterBlum.DES.Web.WebControls._NumericTextBoxCalcltem
New PeterBlum.DES._Web._WebControls._.NumericTextBoxCalcltem(
PeterBlum.DES.CalcOperator.Add, DecimalTextBox2)
VvSubExpl.Expression.Add(vDTB2)
CalculationControllerl_Expression.Add(vSubExpl)
" Constant * 25
Dim vConst As PeterBlum.DES.Web.WebControls.ConstantCalcltem = _
New PeterBlum.DES.Web.WebControls.ConstantCalcltem(_
PeterBlum.DES.CalcOperator _Multiply, 25.0)
CalculationControllerl_Expression._Add(vConst)

e RoundMode (enum PeterBlum.DES.CalcRoundMode) — Determines if the result of the calculation is rounded or

numeric TextBox. For example, an IntegerTextBox uses 0 decimal places, which means it rounds to a whole number. For
all other situations, when DecimalPlaces is Auto, there is no rounding or truncating.

The enumerated type PeterBlum.DES.CalcRoundMode has these values:
0 Truncate - Truncate after the number of decimal digits specified by DecimalPlaces.
For example, if DecimalPlaces is 1, 2.9 is 2.9; 2.99 is 2.9; 3 is 3.

0 Currency - Applies “Banker rules” where it rounds up after the digit after the number of decimal digits
specified by DecimalDigits is 5 or higher but only when it will round up to an even number. All other cases
round down (truncate). This is how the .net System.Math.Round() method works. On the server side, it in
fact uses System_Math_.Round().

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 96 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

For example, if DecimalPlaces is 1, 2.9 is 2.9; 2.99 is 3.0 (because it rounds the 9 up to 10), 2.89 is 2.8
(because 8 is already an even number.)

RoundMode defaults to Currency.

0 Point5 - Round up when the digit after the number of decimal digits specified by DecimalDigits is 5 or
higher. All other cases round down (truncate). When the value is a negative number, rounding “up” makes a
larger negative number.

For example, if DecimalPlaces is 1, 2.9 is 2.9; 2.99 is 3.0; 2.95 is 3.0; 2.94 is 2.9; -2.99 is -3.0; -2.94 is -2.9.

o0 Ceiling - Round up when the digits after the number of decimal digits specified by DecimalDigits is not
zero. When the value is a negative number, it makes a smaller negative number. On the server-side, it uses
System.Math.Ceiling(Q).

For example, if DecimalPlaces is 1, 2.9 is 2.9; 2.900000 is 2.9; 2.99 is 3.0; 2.90001 is 3.0; -2.900 is -2.9; -2.99
is-2.9.

o NextWhole - Round up when the digits after the number of decimal digits specified by DecimalDigits is not
zero. When the value is a negative number, it makes a larger negative number. It is almost identical to
Cei ling except it makes negative numbers larger.

For example, if DecimalPlaces is 1, 2.9 is 2.9; 2.900000 is 2.9; 2.99 is 3.0; 2.90001 is 3.0; -2.900 is -2.9; -2.99
is -3.0.

e Value (System.Double) — Gets the calculated value based on the current values in the controls associated with this
expression. Always test IsValid is true first. If IsValid is false, this returns 0.0.

The first time this method is called, its value is cached. If you change any of the values in TextBoxes, call
Recalculate () before using Value again. Recalculate() takes no parameters and returns no value. For
example:

CalculationControllerl_Recalculate()

e ValueText (string) — Converts Value into a string. If IsValid is False, it returns "". This is used by Validators on the
server side.

e IsValid (boolean) — When true, the calculated value is valid and reflected in Value. When false, the calculation had
an error and Value is 0.0.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 97 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Showing The Value Properties
The Properties Editor shows these properties in the “Show Value” category.

ShowValueControlID (string) — The ID to an IntegerTextBox, DecimalTextBox, CurrencyTextBox, PercentTextBox,
Label, or LocalizableLabel that will display the result of the calculation.

This ID must be in the same or an ancestor naming container. If it is in another naming container, use
ShowValuelnstance.

If this and ShowValuelnstance are unassigned, the calculation is not displayed.

Formatting, such as decimal character, currency symbol, and thousands separator are determined by

It defaults to """

ShowValuelnstance (System.Web.Ul.Control) — A reference to an IntegerTextBox, Decimal TextBox,
CurrencyTextBox, PercentTextBox, Label, or LocalizableLabel that will display the result of the calculation. It is an
alternative to ShowValueControlID that you must assign programmatically. It accepts controls in any haming container.

When programmatically assigning properties, if you have access to the control object that will be displayed, it is better to
assign it here than assign its ID to the ShowValueControllD property because DES operates faster using
ShowValuelnstance.

InvalidValueL abel (string) — When there is an error while calculating, this text is assigned to the control displaying the
value.

the DataTypeCheckValidator that disables it when this value is present. For the Enabler, use a
CompareToValueCondition with Operator of NotEqual and ValueToCompare with the same text as this property.

It defaults to """

InvalidValueCssClass (string) — When there is an error while calculating, you can change the appearance of the control
displaying the value by assigning a style sheet class name here.

It is not used when "

It defaults to """

DecimalPlaces (enum PeterBlum.DES.CalcDecimalPlaces) — The number of decimal places to round or truncate the
value. When the control to display is assigned to a Label control, this also determines the overall format of the value
written into the Label.

The enumerated type PeterBlum.DES.CalcDecimalPlaces has these values:
0 Auto - Depends on the type of control to display:
= IntegerTextBox — O decimal places.

= DecimalTextBox — Use the DecimalTextBox.MaxDecimalPlaces property. If MaxDecimalPlaces is 0,
show as many decimal places as needed.

= CurrencyTextBox — Use the number of decimal places for Currency defined in
PeterBlum.DES.Globals.WebFormDirector.Culturelnfo.

= Labels - Show as many decimal places as needed. Do not round or truncate. When you want to show a
currency, always use Currency.

It defaults to Auto.

o Integer -0 decimal places
o0 Decimall -1 decimal place
o0 Decimal2 - 2 decimal places
o0 Decimal3 - 3 decimal places
Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 98 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Decimal4 - 4 decimal places
Decimal5 -5 decimal places
Decimal 6 — 6 decimal places
Decimal7 — 7 decimal places
Decimal8 - 8 decimal places
Decimal9 - 9 decimal places

Decimal 10 — 10 decimal places

0O O 0O O O o o o

Currency - Use the number of decimal places for Currency defined in
PeterBlum.DES.Globals.WebFormDirector.Culturelnfo.

have their own properties to show thousands separators. It defaults to false.

e LabelFormatCurrencySymbol (Boolean) — When the control to display is a Label and this is true, the currency

TextBoxes have their own properties to show the currency symbol. It defaults to False. This setting requires
DecimalPlaces = Currency.

e LabelToken (string) — When the control to display is a label, the entire text or just a token within that text can be
replaced. When this property is assigned, it is a token to be replaced. Otherwise, the entire text is replaced.

This allows the value to be inserted into a larger string, like a sentence. It also allows multiple CalculationControllers to
update a common Label. For example, the Label.Text is “The result is {CALC}” and LabelToken is "{CALC}".

To use it, add a token such as "{CALC}" or "{0}" into the Label's Text where the calculation belongs. There should only
be one instance of this token per Label.

When it is ", the entire text of the Label is replaced.

When assigned, this exact text (case sensitive) is replaced with the calculation value where it appears in the Label's
current text. You should only define one token in your Label's text.

It defaults to """

e AutoShowValue (enum PeterBlum.DES.Web.AutoShowValueMode) — Determines if the control to display the value is
assigned the result of the calculation on the server side. When it is used, the calculation will occur during the control's
PreRender stage using the current values in the textboxes. Often users leave it off when the page is first created but have
it calculated on post back because it now reflects the user's data.

You can always call the CalculationControl ler.ShowValue() method to calculate and update the control
with the value as an alternative to using this property.

The enumerated type PeterBlum.DES.Web . AutoShowValueMode has these values:
0 OfFfF - It never displays the calculation result in PreRender. You can still use ShowValue () to set it.
0 PostBack - Display on postback. This is the default.

o Always - Display when the page is first created and on postback.

textboxes.
ShowValue () takes no parameters and returns no result. Here is an example on CalculationControllerl.

CalculationControllerl._Showvalue()

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 99 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

When to Use the Control Properties
The Properties Editor shows these properties in the “When To Use” category.

e Visible (Boolean) — Determines if the control is used or not. When true, it is used. When false, it is not. It defaults
to true.

¢ RunOnlyOnDemand (Boolean) — Indicates that this calculation cannot run on the client-side unless you call the
DES_CalcOnDemand() javascript function. You generally setup the onchange event to textboxes that will invoke this
function.

When false, the calculation runs automatically.

When true, the calculation only runs if you call DES_CalcOnDemand(1D). The function parameter is the ClientID
value for the CalculationController.

It defaults to False.

For example, the field showing the calculation result is an IntegerTextBox where you don’t want it to be updated after
the user edits that textbox. You could write a javascript function that knows the state of editing on the IntegerTextBox
and calls DES_CalcOnDemand() when it has not been edited. Attach the onchange event of any textboxes that
normally invoke this calculation to call your function.

<script type="text/javascript® >
var gResultWasEdited = false;
function UpdateResult(pSourceField)

{
iT (IgResultWasEdited)
DES_CalcOnDemand(*'<% =CalculationControllerl.ClientID %>"");
¥
</script>

In Page_Load(), setup the onchange events using the
PeterBlum.DES.Globals._WebFormDirector.AttachCodeToEvent() function (which is required when
using the DES numeric textboxes).

PeterBlum.DES.Globals._WebFormDirector.AttachCodeToEvent(
EnterValueTextBox, "onchange', "UpdateResult(this);", false);

PeterBlum.DES.Globals._WebFormDirector._.AttachCodeToEvent(
ResultTextBox, "onchange', '""gResultWasEdited = true'", false);

e Enabler (PeterBlum.DES.IBaseCondition) — There are times when a CalculationController should be disabled. For

with the Enabler property on each CalculationController. By default, the Enabler property is set to “None”, where it
doesn’t disable the control. You can set it to any Condition, including those you may create programmatically.

Consider these issues when using the Enabler:

0 Most Conditions have a property called EvaluateOnClickOrChange which defaults to true. Change it to
false when using it in an Enabler.

o0 Do not use this to detect a control whose Visible property is set to Fal se. Such a control does not create
HTML for the client-side to use. Instead, set the Enabled property to false when the control is invisible.

Y Online example

CONTINUED ON THE NEXT PAGE

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 100 of 309

http://www.peterblum.com/des/support.aspx�
http://learningdes.peterblum.com/InteractivePages/CalculationController/Enabler.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Select the Condtion to use
Condition [med{StateCond'rtion hd]

Evaluates CheckBoxes and RadioButtons to determine f the checked state matches
the Checked property.

Properties

Control DToEvaluate

E When to use
Enabled
EvaluateOnClickOrChange

Checked

The state of a CheckBox or RadioButton’s Checked property desired for a true
resulting condition.

1
2. Establish the properties in the Properties grid.

3. Reminder: Be sure to set EvaluateOnClickOrChange to false on all Conditions within the Enabler as shown.
4. Click OK.

If you want to enter the Enabler property and its child properties into the web form using the HTML mode, there are
special considerations. The format is very unusual, in part because the .Net framework doesn’t support changing the
class of a property (polymorphism) without an interesting hack.

Here is the CalculationController with the Enabler set to the CheckStateCondition.
<des:CalculationController id="CalculationControllerl" runat="server" >

<EnablerContainer>
<des:CheckStateCondition ControlIDToEvaluate="CheckBox1""
EvaluateOnClickOrChange=""false" />
</EnablerContainer>

</des:CalculationController >
Reminder: Be sure to set EvaluateOnClickOrChange to false on all Conditions within the Enabler as shown.

Notice that the Enabler property never appears in the attributes of the <des:CalculationController> tag. (It
will be added when using the Properties Editor but it’s completely meaningless.) Instead, the <EnablerContainer>
tag is a child of the CalculationController tag. That tag never has any attributes. The child to <EnablerContainer>

<des:classname [all properties] />

0 des:classname — Use any Condition class for the classname. If you create your own classes, you must declare
the namespace using the <% @REGISTER %> tag at the top of the page.

o [all properties] — Enter the properties into the tag the same way you do for any other control.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 101 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

1. Create an instance of the desired Condition. There is a constructor that takes no parameters.

Note: There are also constructors that take parameters representing some of the control’s properties. Each
demands an ““owner” in the first parameter. That value must be the FieldStateController object.

2. Assign property values.
Reminder: Be sure to set EvaluateOnClickOrChange to false on all Conditions within the Enabler.

3. Assign the Condition object to the Enabler property.
In this example, add the CheckStateCondition, which is checking CheckBox1, to CalculationControllerl.

[C#]
PeterBlum.DES.Web.WebControls.CheckStateCondition vCond =
new PeterBlum.DES._Web._WebControls.CheckStateCondition();
vCond.ControlToEvaluate = CheckBox1;

vCond.EvaluateOnClickOrChange = false;
CalculationControllerl.Enabler = vCond;

[VB]
Dim vCond As PeterBlum.DES.Web.WebControls.CheckStateCondition = _
New PeterBlum.DES._Web._WebControls.CheckStateCondition()
vCond.ControlToEvaluate = CheckBox1
vCond.EvaluateOnClickOrChange = False
CalculationControllerl_Enabler = vCond

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 102 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Behavior Properties
The Properties Editor shows these properties in the “Behavior” category.

e InAJAXUpdate (Boolean) — When the page uses AJAX callbacks to add, update, or remove this control, set this to
true. It defaults to false.

In addition, if any of these properties identify a control that participates in the AJAX callback, set this to true:
0 ShowValueControllD and ShowValuelnstance

o0 Any control identified inside of the Expression property, including textboxes, lists, and other
CalculationControllers.

o Enabler. Look at the ControlIDToEvaluate and SecondControllIDToEvaluate.
o ExtraControlsToRunThisAction.

Note: This is only needed for non-DES controls. DES controls will tell the FieldStateController if their own
ISAJAXUpdate property is true.

See “Using These Controls with AJAX” in the General Features Guide.

e ValidateOnCalc (boolean) — When true, client-side validation is applied to any Validators evaluating to this control
after a numeric TextBox involved in this Expression is edited. When Fal se, Validators only update when the page is
submitted. It defaults to False.

e ExtraControlsToRunThisAction (PeterBlum.DES.Web.WebControls.ControlConnectionCollection) — Identifies
additional controls and elements on the page that run this CalculationController when clicked or changed.

ListConstantsCalcltem objects so this is rarely needed.

This property is a collection of PeterBlum.DES.Web .WebControls.ControlConnection objects. You can
assign the control’s ID to the ControlConnection.ControllD property or a reference to the control in the
ControlConnection.Controllnstance property. When using the ControllD property, the control must be in the same or
an ancestor naming container. If it is in another naming container, use Controllnstance.

Here are some considerations:

0 Be sure that the control assigned to this collection has the runat=server property.

ExtraControlsToRunThisAction is a type of collection. Therefore its ASP.NET Markup is nested as a series of child
controls within the <ExtraControlsToRunThisAction> tag. Here is an example.

<des:CalculationController id="CalcControllerl"” runat="server'>

<ExtraControlsToRunThisAction>
<des:ControlConnection ControlID="TextBox1" />
<des:ControlConnection ControllD="Labell" />

</ExtraControlsToRunThisAction>

</des:CalculationController>

Use the ExtraControlsToRunThisAction.Add() method to add an entry. This overloaded method takes one
parameter. Choose from the following:

o A reference to the control itself. This is the preferred form.
e Astring giving the ID of the control. Do not use this when the control is not in the same naming container.

e Aninstance of the class PeterBlum.DES.Web.WebControls.ControlConnection.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 103 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

This example shows how to update an existing PeterBlum.DES.Web.WebControls.ControlConnection
and add a new entry. Suppose the ASP.NET code looks like the text above and the Labell control is not in the same or
ancestor naming container. Also suppose the control referenced in the property TextBox2 control must be added.

[C#]
uses PeterBlum.DES;

ControlConnection vConnection = (ControlConnection)
CalcControllerl._ExtraControlsToRunThisAction[1];

vConnection.ControlInstance = Labell;

// add TextBox2. It can be either a control reference or its ID

CalcControllerl._ExtraControlsToRunThisAction.Add(TextBox2);

[VB]
Imports PeterBlum.DES

Dim vConnection As ControlConnection = _
CType(CalcControllerl.ExtraControlsToRunThisAction(l), ControlConnection)

vConnection.Controllnstance = Labell

" add TextBox2. It can be either a control reference or its ID

CalcControllerl._ExtraControlsToRunThisAction.Add(TextBox2)

o ViewStateMgr (PeterBlum.DES.Web.WebControls.ViewStateMgr) — Enhances the ViewState on this control to provide
more optimal storage and other benefits. Normally, the properties of this control and its segments are not preserved in the
ViewState. When working in ASP.NET markup, define a pipe delimited string of properties in the PropertiesToTrack
property. When working in code, call ViewStateMgr . TrackProperty(‘'propertyname') to save the
property. Individual segments have a similar method: TrackPropertylnViewState("'propertyname™)

For more details, see “The ViewState and Preserving Properties for PostBack” in the General Features User’s
Guide.

e PropertiesToTrack (string) — A pipe delimited list of properties to track. Designed for use in markup and the properties
editor. The ViewState is not automatically used by most of these properties. To include a property, add it to this pipe
delimited list.

For example, "Group|MayMoveOnClick".
When working programmatically, use ViewStateMgr.TrackProperty("PropertyName").

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 104 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Properties on Calcltem Classes

of each class.

Click on any of these topics to jump to them:

* O 6 & o o o o o
0
0
°
2
('_'_D".
(/2]
)
=
@
T
@
@
®
c
3
)
m
n
s
)
o
-3
)
O
)
o
>
S
»
Q)
o
>
0
QD
=
@)
2
o
5]
3
@)
o]
2]
(2]

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 105 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Properties Common To All Calcltem Classes

e Operator (enum PeterBlum.DES.CalcOperator) — Determines if this value is added, subtracted, multiplied, or divided
against values previously added to the expression. If there are no previous values, it calculates against 0. If this Calcltem
object is the first in an expression, it is recommended that you leave this set to Add.

The enumerated type PeterBlum.DES.CalcOperator has these values:
0 Add - This is the default.

0 Subtract
o Multiply
o Divide

e Enabled (Boolean) — Determines if this Calcltem is used in the calculation. When true, it is used. It defaults to true.

Often you use this when you define an expression on the ASP.NET Markup definition and need to customize it
programmatically. When you do so, you usually also assign the 1D property so you can search for this Calcltem object.

e 1D (string) — An optional ID used to allow a search for this element throughout the Expression or to let their custom

The user can leave it blank if not programmatically searching for this Calcltem object. When assigned, it should be

unique amongst all Calcltems objects in this Expression. When ", it is not used. It defaults to """

Use the CalculationControl ler._FindByID() method to search for this Calcltem by ID. FindBy1D() takes
one parameter, the 1D to locate (as a string). It returns the Calcltem object as the interface

PeterBlum.DES. IBaseCalcltemor nul I/nothing if no matching Calcltem is found. Usually you will
typecast the result to the desired type. Here is an example that locates a NumericTextBoxCalcltem by the ID of “Ratel”
and sets its TextBoxInstance property to the DecimalTextBox in the field DecimalTextBox1.

[C#]

PeterBlum.DES. IBaseCalcltem vitem = CalculationControllerl._FindByID("'Ratel™);

it (vitem = null)
((PeterBlum_DES._Web_WebControls.NumericTextBoxCalcltem)vIitem) . TextBoxlnstance =
DecimalTextBox1;

[VB]
Dim vitem As PeterBlum.DES. IBaseCalcltem = _

CalculationControllerl._FindByID("'Ratel)
IT Not vitem Is Nothing Then

CType(vitem, _
PeterBlum.DES.Web.WebControls._.NumericTextBoxCalcltem) . TextBoxInstance = _
Decimal TextBox1
End If
Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 106 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Properties for the PeterBlum.DES.Web.WebControls.NumericTextBoxCalcltem
Class

The PeterBlum.DES .Web.WebControls.NumericTextBoxCalcltem class retrieves its value from any of DES’s
numeric TextBoxes — IntegerTextBox, DecimalTextBox, CurrencyTextBox, and PercentTextBox. It sets up the
CalculationController to automatically calculate each time the textbox is changed and focus leaves the control.

The following are properties of this class:

TextBoxControlID (string) — The ID to an IntegerTextBox, DecimalTextBox, CurrencyTextBox, or PercentTextBox.
This ID must be in the same or an ancestor naming container. If it is in another naming container, use TextBoxInstance.

If the control cannot be found in the current or any parent NamingContainer, an exception is thrown at runtime.

TextBoxInstance (PeterBlum.DES.INumberTextBox) — A reference to an IntegerTextBox, Decimal TextBox,
CurrencyTextBox, or PercentTextBox. It is an alternative to TextBoxControllD that you must assign programmatically.
It accepts controls in any naming container.

When programmatically assigning properties, if you have access to the textbox control object, it is better to assign it here
than assign its ID to the TextBoxControlID property because DES operates faster using TextBoxInstance.

InvalidlsZero (Boolean) — Determines what to do when an invalid value is in the textbox.
When true, an invalid value becomes 0 in the calculation and the calculation continues.
When False, it stops the calculation and reports an error.

It defaults to true.

BlanklsZero (Boolean) — Determines what to do when the textbox is empty.

When true, a blank textbox uses the value 0 in the calculation and the calculation continues.
When False, it stops the calculation and reports an error.

It defaults to true.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 107 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Properties for the PeterBlum.DES.Web.WebControls.ListConstantsCalcltem
Class

The PeterBlum.DES.Web.WebControls.ListConstantsCalcltem class associates the items in a ListBox or
DropDownList with constants. You can define constants for each item or for a range. You can also report an error when a
specific item is selected.

The following are properties of this class:

e Operator, Enabled, and ID - See “Properties Common To All Calcltem Classes”.

e CustomCalcFunctionName and CustomCalculation — See “Adding Custom Code to a Calcltem”.

e ListControllD (string) — The ID to a ListBox, DropDownList, or System.Web.UIl.HtmlIControls.HtmlISelect control.
This ID must be in the same or an ancestor naming container. If it is in another naming container, use Listlnstance.

If the control cannot be found in the current or any parent NamingContainer, an exception is thrown at runtime.

e ListInstance (System.Web.Ul.Control) — A reference to a ListBox, DropDownL.ist, or
System.Web.UI.HtmIControls.HtmlSelect control. It is an alternative to ListControllD that you must assign
programmatically. It accepts controls in any naming container.

When programmatically assigning properties, if you have access to the list control object, it is better to assign it here than
assign its ID to the ListControllD property because DES operates faster using ListInstance.

e ConstantWhenNoMatch (double) — When the SelectedIndex of the list control does not find a match in the
ConstantsForSelectedIndexes property, this value is used. It defaults to 0.

e ErrorWwhenNoMatch (boolean) - When the SelectedIndex of the list control does not find a match in the
ConstantsForSelectedIndexes property, set this to true to report an error to the CalculationController. When fal se,
the value of ConstantWhenNoMatch is used. It defaults to false.

Reporting an error stops the calculation from continuing.

e ConstantsForSelectedIndexes (PeterBlum.DES.ConstantsForSelectedIndexes) — A list that defines how each item in
the list control maps to a constant. This list should have at least one item.

You add PeterBlum._DES.ConstantForSelectedlndex objects to this list. The ConstantForSelectedIndex
class has these properties:

o0 Startlndex (integer) — The index of the item to map to the constant. If you are using a range, this is the lower
index. It can be -1 to the highest position in the list control. -1 is used for no selection. 0 is for the first item
shown in the list. It defaults to -1.

0 EndIndex (integer) — When using a range, assign this to the upper index. Leave it at -1 if not using a range. It
defaults to -1.

0 Constant (double) — The numeric value that is used when this object matches the SelectedIndex of the list. It
defaults to 0.

o Error (Boolean) — When true, report an error to the CalculationController instead of using the Constant
property. When Fal se, use the Constant property. It defaults to fal se.

Reporting an error stops the calculation from continuing.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 108 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES

A moouLe oF PETERS OATA ENTRY SUITEVS

The Properties Editor for the ConstantsForSelectedIndexes property provides a window where you can select Calcltem

objects and establish their properties.

ConstantForSelectedIndex Collection Editor @Iéj
Members: Indews 0 Constant: 5 properties:
B Index: 0 Constant: 5 & | =
1| Startlndex: 1 EndIndex: 2 Constant: 1 4 Selectedindex Range
2| Index: 3 Constant: 25
EndIndex -1
Startlndex 0
4 Value
Constant 5
Error False
4| m 5 Constant
When the list's selected index matches this
Add] [Rernove object's range, use this value. The Error p...
[OK] l Cancel]

The Add button adds a new item. The Remove button removes the selected item.

Establish the properties in the Properties grid.
Click OK.

You add the ConstantsForSelectedIndexes as child of the <ConstantsForSelectedIndexes> tag.
The following example creates three ConstantForSelectedindex objects that map to items in ListBox1:

<des:CalculationController id=CalculationControllerl runat="server'>
<Expression>
<des:ListConstantsCalcltem ListControlID="ListBox1l" >
<ConstantsForSelectedIndexes>
<des:ConstantForSelectedIndex Startlndex="0" Constant="5" />
<des:ConstantForSelectedIndex Startlndex="1" EndIlndex="2"
Constant="10" />
<des:ConstantForSelectedIndex Startindex="3" Constant="25" />
</ConstantsForSelectedlndexes>
</des:ListConstantsCalcltem>
</Expression>
</des:CalculationController>

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 109 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Here are the steps to add PeterBlum.DES.ConstantForSelectedlndex objects to the
ConstantsForSelectedIndexes Property.

1. Create an instance of the PeterBlum.DES.ConstantForSelectedlIndex class. Here are the available
constructors. Their parameters match to properties described in the class definition, above.

ConstantForSelectedIndex()
ConstantForSelectedlndex(Constant, Startlndex)
ConstantForSelectedIndex(Constant, Startlndex, EndlIndex)
ConstantForSelectedIndex(Error, Startindex)
ConstantForSelectedIndex(Error, Startlndex, Endlndex)

2. Assign property values.
3. Add the object to the ConstantsForSelectedIndexes property by passing it to the Add () method.

This example creates the three ConstantForSelectedIndex objects shown in the above HTML text. The
ListConstantsCalcltem is assigned the ID of “ConstsForListBox1” elsewhere.

[C#]

PeterBlum.DES.Web.WebControls.ListConstantsCalcltem vCalcltem =
(PeterBlum.DES.Web.WebControls.ListConstantsCalcltem) // typecast
CalculationControllerl_FindByID("'ConstsForListBox1™);
// const=5 startindex=0
PeterBlum.DES.ConstantForSelectedlndex VvCFSI =
new PeterBlum.DES.ConstantForSelectedlndex(5.0, 0);
vCalcltem.ConstantsForSelectedlndexes.Add(vCalcltem);
// const=10, startindex=1,endindex=2
VCFSI = new PeterBlum.DES.ConstantForSelectedIndex(10.0, 1, 2);
vCalcltem.ConstantsForSelectedIndexes.Add(vCalcltem);
// Error=true, startindex=3
VCFS1 = new PeterBlum.DES.ConstantForSelectedIndex(true, 3);
vCalcltem.ConstantsForSelectedlndexes.Add(vCalcltem);

[VB]

Dim vCalcltem As PeterBlum.DES.Web.WebControls.ListConstantsCalcltem = _
CType(CalculationControllerl_FindBylD("'ConstsForListBox1™),
PeterBlum.DES.Web.WebControls.ListConstantsCalcltem)
" const=5 startindex=0
Dim vCFS1 As PeterBlum.DES.ConstantForSelectedIndex =_
New PeterBlum.DES.ConstantForSelectedlndex(5.0, 0)
vCalcltem.ConstantsForSelectedIndexes.Add(vCalcltem)
" const=10, startindex=1,endindex=2
VCFSI = New PeterBlum._DES.ConstantForSelectedlndex(10.0, 1, 2)
vCalcltem.ConstantsForSelectedlndexes.Add(vCalcltem)
" Error=true, startindex=3
VCFS1 = New PeterBlum.DES.ConstantForSelectedIndex(true, 3)
vCalcltem.ConstantsForSelectedIndexes.Add(vCalcltem)

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 110 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Properties for the PeterBlum.DES.Web.WebControls.CheckStateCalcltem Class

The PeterBlum.DES.Web.WebControls.CheckStateCalcltem class determines its value from one of two
constants that are selected based on the check state of a CheckBox or RadioButton, including those in CheckBoxL.sts and
RadioButtonLists.

One common usage is to add a series of checkboxes that are checked. Since this control also returns a value for the
unchecked state, usually you use ValueWhenUnchecked = 0 when adding or subtracting. You use ValueWhenUnchecked = 1
when multiplying or dividing.

The following are properties of this class:

e Operator, Enabled, and ID - See “Properties Common To All Calcltem Classes”.

e CustomCalcFunctionName and CustomCalculation — See “Adding Custom Code to a Calcltem”.

e CheckStateControlID (string) — The ID to a CheckBox, RadioButton, CheckBoxL.ist, or RadioButtonList. This ID must
be in the same or an ancestor naming container. If it is in another naming container, use CheckStatelnstance.

If the control cannot be found in the current or any parent NamingContainer, an exception is thrown at runtime.
When assigned to a CheckBoxList or RadioButtonList, set the Index property to the button within the list.

e CheckStatelnstance (Control) — A reference to a CheckBox, RadioButton, CheckBoxL.ist, or RadioButtonList. It is an
alternative to CheckStateControllD that you must assign programmatically. It accepts controls in any naming container.

When programmatically assigning properties, if you have access to the textbox control object, it is better to assign it here
than assign its ID to the CheckStateControllD property because DES operates faster using CheckStatelnstance.

When assigned to a CheckBoxL.ist or RadioButtonL.ist, set the Index property to the button within the list.

e Index (integer) — Used with RadioButtonL.ist and CheckBoxList controls to identify the specific button within the list
whose state is evaluated.

Not used when using RadioButton or CheckBox controls.
Values start at 0 where 0 is the first button in the list.
It defaults to 0.
e ValueWhenChecked (double) — Gets and sets a number to use in the expression when the button is checked.
It defaults to 1.
e ValueWhenUnchecked (double) — Gets and sets a number to use in the expression when the button is not checked.
It defaults to 0.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 111 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Properties for the PeterBlum.DES.Web.WebControls.ConstantCalcltem Class

The PeterBlum.DES.Web.WebControls.ConstantCalcltem class supplies a single number — a constant — into
your expression.

The following are properties of this class:

e Operator, Enabled, and ID — See “Properties Common To All Calcltem Classes”.

e CustomCalcFunctionName and CustomCalculation — See “Adding Custom Code to a Calcltem”.

e Constant (double) — Gets and sets the number to use in the expression. It holds a decimal value using System.Double
type but you can assign an integer to it too. It defaults to 1.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 112 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Properties for the PeterBlum.DES.Web.WebControls.ParenthesisCalcltem Class

The PeterBlum.DES .Web.WebControls.ParenthesisCalcltem class creates a sub expression, where all of its

elements are calculated together first before the result is used in the expression that contains this object. It’s like using
parenthesis in a mathematical expression.

The following are properties of this class:

e Operator, Enabled, and ID — See “Properties Common To All Calcltem Classes”.

e CustomCalcFunctionName and CustomCalculation — See “Adding Custom Code to a Calcltem”.

e Expression (PeterBlum.DES.BaseCalcExpression) — A list of any type of Calcltem objects that are calculated together.

Calculations are always done from the first item in the list to the last. The first item’s Operator property should always
be Add.

mode, and programmatically.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 113 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Properties for the PeterBlum.DES.Web.WebControls.ConditionCalcltem Class

With IF statement logic, you can change the mathematical expression based on settings on the web form. For example, if a
checkbox is used to enable a NumericTextBox, you will use this to determine if the checkbox is checked before using a
NumericTextBoxCalcltem to include its value in the calculation.

The following are properties of this class:

e Operator, Enabled, and ID - See “Properties Common To All Calcltem Classes”.

e CustomCalcFunctionName and CustomCalculation — See “Adding Custom Code to a Calcltem”.

e Condition (PeterBlum.DES.IBaseCondition) — The Condition object used to select between ExpressionWhenTrue and

ExpressionWhenFalse. You can assign any Condition class. Initially its value is nul I; you must assign a Condition
object or runtime exception will occur.

When Conditions are evaluated, they return one of three states: “success”, “failed”, and “cannot evaluate™:
0 “success” calculates the expression defined in ExpressionWhenTrue.

o “failed” calculates the expression defined in ExpressionWhenFalse. If you set InvalidWhenFalse to true, it will
stop the calculation and report an error. This is a common situation, where anything but the “success” state is
considered an error.

0 “cannot evaluate” uses the CannotEvalMode property to determine the action to take. It can select either
ExpressionWhenTrue or ExpressionWhenFalse, report an error, or return 0.

The Properties Editor offers this window to select a Condition and to edit its properties.

a-l Edit Property: Condition ﬁ
Select the Condition to use
Condtion |Check StateCondition -

Evaluates CheckBoxes and RadioButtons to determine if the checked state matches
the Checked property.

Properties

ControllD ToEvaluate

E When to use
Enabled True
EvaluateOnClickOrChange True

Checked

The state of a CheckBox or RadioButton's Checked property desired for a true
resulting condition.

[ok | [cance |
1.
2. Establish the properties in the Properties grid.
3. Click OK.
Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 114 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

If you want to enter the Condition property and its child properties into the web form using the HTML mode, there are
special considerations. The format is very unusual, in part because the .Net framework doesn’t support changing the
class of a property (polymorphism) without an interesting hack.

Here is the CalculationController with a ConditionCalcltem whose Condition is set to the CheckStateCondition looking
at CheckBox1.

<des:CalculationController id=CalculationControllerl runat="'server'>
<Expression>
<des:ConditionCalcltem>

<ConditionContainer>
<des:CheckStateCondition ControlIDToEvaluate="CheckBox1" />
</ConditionContainer>

<ExpressionWhenTrue>
<des:NumericTextBoxCalcltem TextBoxControl ID="DecimalTextBox1" />
</ExpressionWhenTrue>

<ExpressionWhenFalse>
<des:ConstantCalcltem Constant="0" />
</ExpressionWhenFalse>

</des:ConditionCalcltem>
</Expression>
</des:CalculationController>

Notice that the Condition property never appears in the attributes of the <des:ConditionCalcltem> tag. (It will
be added when using the Properties Editor but it’s completely meaningless.) Instead, the <ConditionContainer>
tag is a child of the ConditionCalcltem tag. That tag never has any attributes. The child to <ConditionContainer>

<des:classname [all properties] />

0 des:classname — Use any Condition class for the classname. If you create your own classes, you must declare
the namespace using the <% @REGISTER %> tag at the top of the page.

o [all properties] — Enter the properties into the tag the same way you do for any other control.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 115 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Here are the steps to set the Condition.
1. Create an instance of the desired Condition class. There is a constructor that takes no parameters.

Note: There are also constructors that take parameters. Each demands an ““owner” in the first parameter. That
value must be the CalculationController object.

2. Assign property values.

3. Assign the Condition object to the Condition property.

In this example, add the CheckStateCondition, which is checking CheckBox1, to ConditionCalcltem object.
[C#]

PeterBlum.DES.Web.WebControls.ConditionCalcltem vConditionCalcltem =
new PeterBlum.DES.Web.WebControls.ConditionCalcltem();
PeterBlum.DES.Web.WebControls.CheckStateCondition vCond =
new PeterBlum.DES.Web._WebControls.CheckStateCondition();
vCond.ControlToEvaluate = CheckBox1;
vConditionCalcltem.Condition = vCond;

[VB]

Dim vConditionCalcltem As PeterBlum.DES.Web.WebControls.ConditionCalcltem = _
New PeterBlum.DES.Web.WebControls.ConditionCalcltem()
Dim vCond As PeterBlum.DES.Web.WebControls.CheckStateCondition = _
New PeterBlum.DES.Web.WebControls.CheckStateCondition()
vCond.ControlToEvaluate = CheckBox1l
vConditionCalcltem.Condition = vCond

this expression. If left empty, it returns a value of 0.

This is a list of any type of Calcltem objects that are calculated together. Calculations are always done from the first item
in the list to the last. The first item’s Operator property should always be Add.

this expression. If left empty, it returns a value of 0.

This is a list of any type of Calcltem objects that are calculated together. Calculations are always done from the first item
in the list to the last. The first item’s Operator property should always be Add.

Sometimes you need your IF statement to report an error when the Condition evaluates as “failed”. Use
InvalidWhenFalse = true to ignore ExpressionWhenFalse and report an error instead.

mode, and programmatically.

e CannotEvalMode (enum PeterBlum.DES.CalcCondCannotEvalMode) — Determines how the calculation works when
the Condition evaluates as “cannot evaluate". Some Conditions cannot evaluate data until certain values exist. For
example, the RangeCondition cannot evaluate until the text in the textbox is formatted to match what is demanded by the
DataType property.

The enumerated type PeterBlum.DES.CalcCondCannotEvalMode has these values:
0 Error - Stop the calculation. 1t’s an error. This is the default.
0 Zero-Return0.
0 True - Use ExpressionWhenTrue.
o

False - Use ExpressionWhenFalse (even when InvalidWhenFalse is true).

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 116 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

as “failed”. Normally it uses the expression defined in ExpressionWhenFalse. If you set InvalidWhenFalse to true, it
will stop the calculation and report an error.
When false, use ExpressionWhenFalse. When true, report an error. It defaults to true.

When the Condition cannot evaluate and CannotEvalMode is set to False, the ExpressionWhenFalse is still used.
This only blocks when the Condition evaluates to "failed".

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 117 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Properties for the PeterBlum.DES.Web.WebControls.CalcControllerCalcltem
Class

The PeterBlum.DES.Web.WebControls.CalcControl lerCalcltem class lets you use the value of another
CalculationController on the page. This reduces the size of your client-side code, makes it easier to set up by not managing
duplicate expressions, and runs faster.

The following are properties of this class:

ControllD (string) — The ID to a CalculationController. This ID must be in the same or an ancestor naming container. If
it is in another naming container, use Controllnstance.

If the control cannot be found in the current or any parent NamingContainer, an exception is thrown at runtime.

Controllnstance (PeterBlum.DES.INumberTextBox) — A reference to a CalculationController. It is an alternative to
ControllD that you must assign programmatically. It accepts controls in any naming container.

When programmatically assigning properties, if you have access to the textbox control object, it is better to assign it here
than assign its ID to the ControllD property because DES operates faster using Controllnstance.

InvalidlsZero (Boolean) — Determines what to do when an invalid value is in the other CalculationController.
When true, an invalid value becomes 0 in the calculation and the calculation continues.
When false, it stops the calculation and reports an error.

It defaults to true.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 118 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Properties for the PeterBlum.DES.Web.WebControls.TotalingCalcltem Class

The PeterBlum.DES .Web.WebControls.Total ingCalcltem class lets you total a column of a ListView,
GridView, DataL ist, and Repeater control. It needs to know of a control within that column, either a numeric textbox like
IntegerTextBox or another CalculationController, which is hosting a value specific to that row.

The following are properties of this class:

GrandTotal (double) — Reworks the Expression to consider paging issues, where the list of rows show a total for the
page, but it lacks the rows on other pages. Calculate the grand total of the column and assign it here. The Expression will
add a constant based on the grand total - the initial calculation of this page's total.

This effectively adds a ConstantCalcltem whose value is GrandTotal minus the page’s column total.
When null, the calculation is not modified.
It defaults to nul I.

ListControlID (string) — The ID of the list or grid control. The control can be one of these types: ListView, GridView,
DataList, or Repeater. This ID must be in the same or an ancestor naming container. If it is in another naming container,
use ListInstance.

If the control cannot be found in the current or any parent NamingContainer, an exception is thrown at runtime.

Recommendation: When programmatically assigning properties, if you have access to the control object, it is better to
assign it to the Listlnstance property than assign its ID to the ListControlID property because DES operates faster
using ListInstance.

ListInstance (object) — A reference to the list or grid control. It is an alternative to ListControllD that you must assign
programmatically. It accepts controls in any nhaming container.

ControlIDInRow (string) — The ID of the control within the column of the list/grid. It can specify the ID of any of these
control types: IntegerTextBox, DecimalTextBox, CurrencyTextBox, PercentTextBox, and CalculationController.

You can also supply the control within the column programmatically through the GetColumnControl event handler.

InvalidlsZero (Boolean) — Determines what to do when an invalid value is in the numeric textbox or
CalculationController.

When true, an invalid value becomes 0 in the calculation and the calculation continues.
When false, it stops the calculation and reports an error.

It defaults to true.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 119 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

The GetColumnControl event handler

An alternative to using the ControlIDInRow property that lets you programmatically find and return a reference to the
numerci textbox or CalculationController within the current row of the list or grid.

It is especially when:

e The control to return varies based on the situation.

e The control is nested inside of another naming container, such as a UserControl, within the row.
Here is the delegate for this event handler:
[C#]

object TotalingCalcltemGetColumnControl(
PeterBlum.DES. IBaseControlIDTotalingCalcltem source,
object listRowContainer)

[VB]

Function TotalingCalcltemGetColumnControl(
ByVal source As PeterBlum.DES. IBaseControllDTotalingCalcltem,
ByVal listRowContainer As Object) As Object

Parameters
source
The TotalingCalcltem object that is requesting this data.

listRowContainer

The object representing the row of the list or grid. While its untyped, it is actually one of these types, based on the
list or grid control used.

Control listRowContainer type

ListView System.Web.UI.WebControls.ListViewltem
GridView System.Web.UI.WebControls.GridViewRow
DatalL.ist System.Web.UI.WebControls.DataL istltem
Repeater System.Web.UI.WebControls.Repeaterltem

desired control.

EXAMPLE IS ON THE NEXT PAGE

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 120 of 309

http://www.peterblum.com/des/support.aspx�
http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.listviewitem.aspx�
http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.gridviewrow.aspx�
http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.datalistitem.aspx�
http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.repeateritem.aspx�
http://msdn.microsoft.com/en-us/library/486wc64h.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Programmatically adds a TotalingCalcltem to CalculationControllerl. The list is a ListView control and the textbox in the
column is IntegerTextBox1.

[C#]

using PeterBlum.DES;
using PeterBlum_DES._Web._WebControls;

protected void Page_Load(object sender, System.EventArgs e)

{
TotalingCalcltem vTCI = new TotalingCalcltem();
vTCIl .Listlnstance = ListViewl;
VvTCIl .GetColumnControl +=
new PeterBlum.DES.TotalingCalcltemGetColumnControl(GetColumnControl);
CalculationControllerl_Expression.Add(vTCl);
}

protected object GetColumnControl (IBaseControlIDTotalingCalcltem source,
object listRowContainer)

return ((ListViewltem)listRowContainer)._.FindControl("'IntegerTextBox1™);
}

[VB]

Protected Sub Page_ Load(ByVal sender As object, ByVal e As System.EventArgs)
ByVal vTCl As TotalingCalcltem = New TotalingCalcltem(Q)
VvTCl_Listlnstance = ListViewl
AddHandler vTCl.GetColumnControl AddressOf GetColumnControl
CalculationControllerl_Expression.Add(vTCl)

End Sub

Protected Function GetColumnControl(_
ByVal source As IBaseControllDTotalingCalcltem,
ByVal listRowContainer As Object) As Object
Return CType(listRowContainer,
ListViewltem).FindControl (""IntegerTextBox1')
End Function

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 121 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Properties for the PeterBlum.DES.BLD.DataFieldTotalingCalcltem Class

The PeterBlum.DES .Web.WebControls.Total ingCalcltem class lets you total a column of a ListView,
GridView, DataL ist, and Repeater control. It needs to know of a control within that column, either a numeric textbox like
IntegerTextBox or another CalculationController, which is hosting a value specific to that row.

The following are properties of this class:

ListControlID (string) — The ID of the BLDL.istView control. This ID must be in the same or an ancestor naming
container. If it is in another naming container, use ListInstance.

If the control cannot be found in the current or any parent NamingContainer, an exception is thrown at runtime.

Recommendation: When programmatically assigning properties, if you have access to the control object, it is better to
assign it to the ListInstance property than assign its ID to the ListControllD property because DES operates faster
using ListInstance.

ListInstance (object) — A reference to the BLDListView control. It is an alternative to ListControlID that you must
assign programmatically. It accepts controls in any naming container.

DataField (string) — The column name to total. This column must be included in the BLDListView.

You can also supply the control within the column programmatically through the GetColumnControl event handler.
InvalidlsZero (Boolean) — Determines what to do when an invalid value is in the numeric textbox.

When true, an invalid value becomes 0 in the calculation and the calculation continues.

When False, it stops the calculation and reports an error.

It defaults to true.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 122 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Adding Custom Code to a Calcltem

All Calcltem classes support properties to extend them with your own code. You write code both for the client-side and
server-side. Your code can have these objectives:

e Ignore the original value. Supply code to return your own value. When using this technique, you usually select a
ConstantCalcltem object, leaving its Constant property at its default, and writing code that gets the value. It is common
to get the value from another control on the page, although there are other scenarios. If you get a value from another
field, be aware that it may start as a string. You must convert it into an integer or decimal for the CalculationController to
process it.

e Detect something special about the original value and replace it with another number on a specific condition. A
ConditionCalcltem can do the same thing, so you probably will use that instead of writing custom code.

e Handle errors reported by the Calcltem object. Many of the Calcltem classes can return an error. For example,
NumericTextBoxCalcltem will return an error when the textbox is blank and the BlanklsZero property is false. You
might fix the error by supplying a numeric value.

e Detect that the value is illegal and report an error. For example, if you demand all values are between 1 and 5 and the
Calcltem returns 6, your function can declare it as an error, stopping the calculation. A ConditionCalcltem can do the
same thing by using its InvalidWhenFalse property.

To create custom code, you will write a JavaScript function whose name is specified in the CustomCalcFunctionName
property. You will also write a server side method that uses the delegate PeterBlum.DES.CalcEventHandler and
assign that method to the CustomCalculation property.

Click on any of these topics to jump to them:

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 123 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

The Client-Side Function and the CustomCalcFunctionName Property
Create a client-side function in JavaScript and assign its name to the CustomCalcFunctionName property.

Your client-side function will be passed the value already calculated on the Calcltem to which it’s attached. It will get the
numeric value or an indication that an error was detected by the Calcltem object. Your function returns a numeric value — the
original one or a new one, or the JavaScript value NaN to report an error and stop further calculations.

Once defined, assign the name of the function to the CustomCalcFunctionName property.

Note: CustomCalcFunctionName must contain only the function name, no parenthesis or parameters. Since it reflects a
JavaScript function, it must match the case of the function exactly.

Your function must take these three parameters in the order shown:
e pSender (string) — The ClientID of the CalculationController that is using this function.

e pCalcltem (object) - The client-side representation of the Calcltem object that calls this function. If you want a way to
share the same function with several Calcltem objects, assign the ID property on each uniquely. Then look at the
pCalcltem.ID property for the same value. (Note that ID is case sensitive.)

On NumericTextBoxCalcltem's the ClientID of the TextBox is pCalcltem.CID.

e pValue (double) - The value from the calculation already performed by pCalcltem. It is a double.
If the Calcltem object encountered an error, pValue is NaN (a special JavaScript name indicating "not a number").
You can test for NaN with the JavaScript function isNaN(pValue).

The result of the function must be assigned either to a number or NaN. The number is used in the calculation instead of the
original value. NaN lets you indicate an error occurred and stop the calculation.

This function returns the original value for numbers between 1 and 5. All other positive numbers return 5. 0 and below return
an error (NaN). If an error was passed in, it returns an error. The function name “MyCalcFunction” should be assigned to
CustomCalcFunctionName.

function MyCalcFunction(pSender, pCalcltem, pValue)

{
it (isNaN(pvalue)) // if an error was passed, indicate error
return NaN;
else it (pvalue < 1) // 0 and lower return NaN
return NaN;
else if (pvalue > 5) // return 5
return 5;
else // values between 1-5 return pValue
return pValue;
}
Example 2

This function returns the value from a hidden input control. It must convert the value from a string to a decimal value using
the JavaScript function parseFloat (which is not culture sensitive so it demands only digits and the period character as
the decimal separator.) The hidden input control has been assigned the id “Hidden1”. The function name “MyCalcFunction2”
should be assigned to CustomCalcFunctionName .

function MyCalcFunction2(pSender, pCalcltem, pValue)

var vFld = DES GetByld("Hiddenl");

return parseFloat(vFld.value); // returns NaN if it conversion fails

}

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 124 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

The Server Side Event Handler and CustomCalculation Property

Your server-side code must hookup a method that matches the delegate PeterBlum.DES.CalcEventHandler to the
CustomCalculation property.

Your method will be passed the value already calculated on the Calcltem to which it’s attached. It will get the numeric value
or an indication that an error was detected by the Calcltem object. Your function returns a numeric value and a boolean flag
indicating an error to stop further calculations.

Once defined, assign the method to the CustomCalculation property.

Note: The CustomCalculation property only handles one event handler and must be assigned programmatically (it does not
appear in the Properties Editor.)

The CalcEventHandler is defined here:
[CH#]

public delegate double CalcEventHandler(
PeterBlum.DES. ICalculationController pSender,
PeterBlum.DES. IBaseCalcltem pCalcltem,
double pvalue,
ref bool pvalid);

[VB]

Public Delegate Function CalcEventHandler(_
ByVal pSender As PeterBlum.DES.I1CalculationController, _
Byval pCalcltem As PeterBlum._DES. IBaseCalcltem, _
Byval pValue As Double, _
ByRef pValid As Boolean) As Double

Parameters
pSender
The CalculationController object that contains this Calcltem.
pCalcltem

The Calcltem object. When you have several Calcltems using the same method, this can help distinguish them. It
also helps to assign the ID property on each Calcltem so your code can identify them. Be sure to typecast this object
to the appropriate Calcltem class before getting its properties.

pValue

The numeric value already determined by the Calcltem object. If the Calcltem object determined there was an error,
this is 0.0 and pValid is false.

pValid

Determines if there is an error. When true, an error is indicated and the calculation will stop processing. You can
change this value, either to report an error (set it to true) or revoke an error (set it to fal se and return a value as
the function result.)

Return value
Your method should return a Double and set the pValid property like this:

e If the value returned is valid and should be used in the calculation, return the number and set pValid to true.

e If the value is not valid and an error should be reported, return 0.0 and set pValid to False. (The value returned will be
ignored.)

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 125 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

In Page_Load(), you attach your method to the CustomCalculation property. The syntax is shown here attaching to the
method “MyCalcMethod”. The Calcltem object was previously assigned an 1D of “UseCalc1” so it can be retrieved into the
variable vCalcltem.

[C#]

PeterBlum.DES. IBaseCalcltem vCalcltem = CalculationControllerl_FindByID("'UseCalcl™);
vCalcltem.CustomCalculation = new PeterBlum.DES.CalcEventHandler(MyCalcMethod);

[VB]

Dim vCalcltem As PeterBlum.DES. IBaseCalcltem = _
CalculationControllerl._FindByID("'UseCalcl™)
vCalcltem.CustomCalculation =

New PeterBlum._.DES.CalcEventHandler(AddressOf MyCalcMethod)

This function returns the original value for numbers between 1 and 5. All other positive numbers returns 5. 0 and below
return an error. If an error was passed in, an error is returned. The method MyCalcMethod should be assigned to
CustomCalculation.

[C#]

public double MyCalcMethod(
PeterBlum.DES. ICalculationController pSender,
PeterBlum.DES. IBaseCalcltem pCalcltem, double pValue, ref bool pVvalid)

if (Ipvalid)
return 0.0; // pvalid is already false
else if (pvalue < 1) // 0 and lower return an error

pvalid = false;
return 0.0;

}

else if (pvalue > 5) // return 5
return 5;

else // values between 1-5 return pValue
return pValue;

}
[VB]

Public Function MyCalcMethod(_
ByVal pSender As PeterBlum.DES. ICalculationController, _
ByVal pCalcltem As PeterBlum.DES. IBaseCalcltem, _
Byval pValue As Double, ByRef pValid As Boolean) As Double

IT Not pvValid Then
Return 0.0 * pValid is already False

Elself pvalue < 1 Then " 0 and lower return an error
pvalid = False
Return 0.0

Elself pvalue > 5 Then " return 5
Return 5

Else " values between 1-5 return pValue

Return pValue
End If
End Function

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 126 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Interactive Hints

A hint on a field lets you offer guidance for data entry on the textbox. For example, if the textbox accepts integers between 1
and 5, say “Enter a number between 1 and 5.”. It is displayed as the control gets focus and is hidden when focus is lost.

A tooltip is another kind of hint but it requires the mouse to point to the control to see it. Data entry fields need to show their
hint as the user is editing, usually without the mouse pointing into the control. So the tooltip is ineffective during data entry.
To solve this, developers sometimes provide labels with hints near a data entry field to assist the user. Due to the static nature
of labels, they take up a lot of screen space. That often leads to reducing the information shown in the hint. Since hints are

there to assist the user, you don’t want to be constrained by these space limitations. DES’s Interactive Hints feature solves
this.

The Interactive Hints feature can display your hint in several ways:

e InaPopupView. A PopupView is similar to a ToolTip, created with HTML and |
Javascript to float near the control. It can be dragged and closed. It can be customized M

with style sheets, images, and settings using the Global Settings Editor. Shown here. =
Enter & song title

e Ina Label on the page. As the data entry control gets focus, a hint is shown. As focus is
lost, the hint is removed. Since only one control can have focus at a time, a single Label can show all of the hints. You
can enhanced the formatting by enclosing the Label in a Panel, which will be shown and hidden.

e Instandard tooltips or Enhanced ToolTips. This lets the user point to the control at any time to read the hint.

e Inthe browser’s status bar as focus enters the control.

Click on any of these topics to jump to them:

¢ Features

¢ Using Interactive Hints

® Displaying Hints: The PeterBlum.DES.Web.WebControls.HintFormatter Class

® Page-Level Hint Settings:

® Javascript functions: Show and Hide the Hint On Demand

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 127 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Features
The primary user interface of a hint is a Label control on the page or a PopupView, floating near the control.

When using Labels
e The Label control uses screen real-estate but is optimized in three ways:

0 One Label can be used by several controls, such as those grouped together.

0 When hidden, the Label can optionally restore the screen space it uses much like validators do with their
ErrorFormatter Display property is set to Dynamic.

0 Let the Label share the same location on the page as the control’s validators. When there are validation error
messages, DES can prevent the hint from showing.

e A Label can display formatted text, including HTML tags.

e The Label usually just contains the hint for the user. If you want it enclosed in a box or shown along with images and
other controls, enclose the Label in the Panel. DES will show and hide the Panel while updating the Label with the
correct hint text.

e Include a JavaScript function to customize what happens when DES shows and hides the Label or Panel. For example,
you could use absolute positioning to move the Label nearer to the textbox with the hint.

When using PopupViews

A PopupView is similar to a ToolTip, created with HTML and Javascript to float near the |
control. N

e Create as many PopupView definitions as needed in the Global Settings Editor. . B
Erter & song title

o Style sheets control much of the appearance, including colors, borders, and fonts.
There are predefined style sheets with yellow, red, blue and grey color schemes in the DES\Appearance\lnteractive
Pages\Hints.css style sheet file. The Global Settings Editor knows about these schemes so you only select a scheme
instead of setting up numerous properties.

e The triangular extension shown at the top of the PopupView is called a Callout. It is a gif image file with transparency.
The callout is optional. PopupViews can appear on any side of the textbox. When using callouts, there are images
pointing left, up, down, and right.

e It has an optional titlebar. The title bar can have a label, including unique text for each control from the HintHelp
property. It also has an optional close box.

e It can be dragged to expose other controls that it is covering. While dragging, its opacity decreases so the user can see
other controls under it.

e Opacity changes in other ways. There is a default maximum opacity, so you can always see through it slightly if desired.
If it is just shown or the mouse moves over it, it increases opacity to the maximum. After the mouse moves away, it
reduces to a lessmore opaque state.

e It has a fixed width. Its height varies depending on the amount of text from the hint. There are predefined PopupViews
for a variety of widths to choose the best width for the given text.

e It supports the HintHelp property from controls that use hints by showing a Help button (image or link). When clicked,
there are a number of things you can do.

o Switch the initial text to the text from the HintHelp property, offering the user expanded directions.
0 Run javascript that can use the text from HintHelp to customize it

0 Gotoa URL with the text from the HintHelp containing part or all of the URL. This is great for opening a help
page with a specific topic ID associated with the control.

e The hint text can contain HTML. The PopupView can define HTML that appears before and after the hint text, such as a
for showing an image.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 128 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Other ways to display Hints

e Show the hint in standard tooltips or Enhanced ToolTips. This lets the user point to the control at any time to read the
hint.

e Show the hint in the browser’s status bar as focus enters the control.

Interactively Customizing the Hint Text

e Validation error messages are a very important part of data entry. They can automatically insert themselves into the hint
text. They can either be shown first or completely replace the hint text. Provide a style sheet to distinguish the validator
error messages from the other text.

¢ Include a JavaScript function to preprocess the hint’s text. This allows you to customize the text based on the situation.

For example, you define the token “{0}” in the hint text. Your JavaScript function replaces the token with the a value
from the page.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 129 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Using Interactive Hints
There are several parts to the Interactive Hints feature;

e The HintFormatter class — Defines the display rules for a hint. The control that shows a hint needs this to know how
to display its hint text.

e The controls that show a hint, such as textboxes. They need 4 key properties:

0 Hint - The hint text. By default, the ToolTip property can also supply the hint its text so long as the Hint

additional help text, the PopupView’s title, text to insert into a script, or text to insert into a URL for a hyperlink.

o0 LocalHintFormatter and SharedHintFormatterName — Choose one of these to connect the HintFormatter to the
control showing the hint. SharedHintFormatterName takes precedence over LocalHintFormatter.
LocalHintFormatter is selected when SharedHintFormatterName is blank. LocalHintFormatter is also selected
by SharedHintFormatterName is “{DEFAULT?}” but the HintManager.DefaultSharedHintFormatterName
property of the PageManager control and PeterBlum.DES.Globals.WebFormDirector.HintManager is blank.

Most of DES’s controls have these controls built in. For any other control, add the NativeControlExtender. It has these
properties.

¢ When you want to display the hint as a popup, set up PopupView definitions. Set the HintFormatter.DisplayMode to
Popup and HintFormatter.PopupViewName to the name of a defined PopupView.

¢ When showing the hint on the page, set up Labels and optionally Panels where the hint will appear. Set the
HintFormatter.DisplayMode to either Static or Dynamic and HintFormatter.HintControllD to the ID of the
Label or Panel.

¢ Page-Level Hint Settings:

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 130 of 309

http://www.peterblum.com/des/support.aspx�
http://www.peterblum.com/DES/DemoHint.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Displaying Hints: The PeterBlum.DES.Web.WebControls.HintFormatter Class

The PeterBlum.DES .Web.WebControls.HintFormatter class describes how the hint text will be displayed. It
provides its name, display mode - on the page or in a PopupView, if it’s also in the tooltip and/or status bar, and more.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 131 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Page-Level Hint Settings:

The PeterBlum.DES.Globals.WebFormDirector.HintManager Property

The PeterBlum.DES.Globals.WebFormDirector.HintManager property establishes a list of HintFormatters to be shared
amongst the controls on the page in the SharedHintFormatters property. While you can create unique HintFormatter

objects on each control, why not define them for each unique case, such as each unique label or PopupView? Additionally,
these shared HintFormatters generate less JavaScript code embedded into your web form.

To make it even easier:

e Establish one HintFormatter object as the default by setting its name to the DefaultSharedHintFormatterName
property. All controls showing hints will use this default automatically, because their SharedHintFormatterName
property defaults to the token “{DEFAULT}”.

e When using PopupViews, you can define the name of a Hint PopupView Definition (created in the Global Settings
Editor) in the SharedHintFormatterName property of the control showing the hint. It will automatically create a
shared HintFormatter using the same name.

Typically the SharedHintFormatters feature is used with PopupViews and when a Label is shared by several controls. It
makes more sense to create HintFormatters on individual controls showing hints when they need their own Labels on the
page. In that case, set up the HintFormatter in the controls’ LocalHintFormatter property and set that control’s

SharedHintFormatterName property to ""'.

Showing Validation Errors In The Hints

When using the DES Validation Framework, you can insert the error messages associated with a data entry control into its
Hint. The error message is probably as important if not more important than the initial hint. If you feel it’s more important,
you can have the hint text entirely replaced by the error messages. Otherwise, you can have them both appear with the error
messages shown first. Use the HintsShowErrors property. It has these values:

e Hint - Show the Hint text but not the validation errors.

e OneErrorAndHint - Show the first validation error and the Hint text.
e AllErrorsAndHint - Show all validation errors and the Hint text.

e OneError - Show the first validation error but not the Hint text.

e AlIErrors - Show all validation errors but not the Hint text.

When error messages are displayed, you can use style sheets to change the appearance of the overall text (such as make a red
background) using the HintsShowErrorsCssClass property and the font of just the error messages using the

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 132 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Adding HintFormatters to the SharedHintFormatters Property

The easiest way to work with SharedHintFormatters is to add a PageManager control. In design mode, open the
HintManager property to expose the SharedHintFormatters property. Then open its editor.

Property Editor for PageManager control ID=P. nagerl i EIEIAJ

Choose v for the most helpful property edit mode
= Interactive Pages - -
[+| Changehanitor HintFormatter Collection Editol
| Bl HintManager
Allow Blank Hints Members:
Defautt SharedHint Formatt: —l
Enable ToolTips UsePopup * ==
Hirits Show Emmors ' B HintFormatter
Hints ShowEmorsCesClass DisplayMade Static
Hirts ShowEmrorsCssClass2 FormatterFunctionh
Hints Show Emors Separator HiddenOnEmor False
PonupOnFocysDela, HirtCortrolD Label1
InStatusBar True
E Misc InTool Tip True
{10y Name UsinglLabel 1
EnableButtonimageEfects PopupViewMName {DEFAULT}
SetFocusFunctionName TextFunctionMame
Visible
(= Py - Name
A unique name for this EmorFomatter. |t is
m&:&:m?hzred b Add] [Remave requirctled. This name is used in the textbox’s 5...

[ok || Cancel

Add the PageManager control. Add <des:HintFormatter> tags into the <des:PageManager> control like this:

<des:PageManager ID=""PageManagerl' runat="'server'>
<HintManager>
<SharedHintFormatters>
<des:HintFormatter DisplayMode="Static"
HintControlID="Labell" InStatusBar="True'" Name="UsinglLabell" />
</SharedHintFormatters>
</HintManager>
</des:PageManager>

When working programmatically, you don’t need the PageManager control’s HintManager property. Instead, you use
PeterBlum.DES.Globals.WebFormDirector.HintManager property with these methods:

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 133 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

When using a PopupView: AddSharedHintPopupView()

Call PeterBlum.DES.Globals._WebFormDirector .HintManager .AddSharedHintPopupView() to add
HintFormatter object that uses a PopupView.

[C#]

PeterBlum.DES._Web._WebControls_HintFormatter AddSharedHintPopupView(
string pName, bool pDefault,
string pPopupViewName);

PeterBlum.DES._Web.WebControls_HintFormatter AddSharedHintPopupView(
string pName, bool pDefault,
string pPopupViewName, bool plnStatusBar, bool plnTooltip);

[VB]

Function AddSharedHintPopupView(ByVal pName As String, _
ByVal pDefault As Boolean, ByVal pPopupViewName As String) _
As PeterBlum.DES._Web.WebControls._HintFormatter

Function AddSharedHintPopupView(ByVal pName As String, _
ByVal pDefault As Boolean, ByVal pPopupViewName As String, _
ByVal pInStatusBar As Boolean, ByVal plInTooltip As Boolean) _
As PeterBlum.DES.Web.WebControls.HintFormatter

Parameters
pName
A unique name for this HintFormatter. If unassigned, it will get the pPopupViewName.

pDefault

When true, use pName as the default for any SharedHintFormatterName property that is "{DEFAULT}" on the
controls using hints.

It sets PeterBlum.DES.Globals.WebFormDirector.HintManager.DefaultSharedHintFormatterName. It has no
affect when HintManager.DefaultSharedHintFormatterName is already assigned.

pPopupViewName
The name of a PopupView definition from the PopupView Hint definitions defined in the Global Settings Editor.
pInStatusBar

When true, show the hint in the status bar of the browser. When not supplied, HintFormatter.InStatusBar is set
to false.

pInTooltip

When true, the control's tooltip is assigned the hint when there is nothing already assigned to the tooltip. The

tooltip does not support the merger of validation error messages. When not supplied, HintFormatter.InToolTip is
set to true.

Return value

The HintFormatter object that was defined.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 134 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Adds a PopupView named “YellowToolTip”. It uses that same name for the HintFormatter.Name by passing " for the
pName parameter. It uses the tooltip and status bar features.

[C#]

PeterBlum.DES.Web.WebControls.HintFormatter vHF =

PeterBlum.DES.Globals.WebFormDirector.HintManager .AddSharedHintPopupView(
v, false, "YellowToolTip"™, true, true);

[VB]
Dim vHF As PeterBlum.DES.Web.WebControls.HintFormatter =

PeterBIum.DES.GIobaIs.WebFormDirector.HintManager.AddSHéredHintPopupView(_
", False, "YellowToolTip"™, True, True)

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 135 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

When using a Label on the Page: AddSharedHintOnPage()

Call PeterBlum.DES.Globals._WebFormDirector .HintManager .AddSharedHintOnPage() to add
HintFormatter object that uses a control on the page, such as a Label or Panel.

[C#]

PeterBlum.DES.Web.WebControls.HintFormatter AddSharedHintOnPage(
string pName, bool pDefault,
Control pHintControl,
PeterBlum.DES._HintDisplayMode pDisplayMode,
bool pHiddenOnError);

PeterBlum.DES.Web.WebControls.HintFormatter AddSharedHintOnPage(
string pName, bool pDefault,
Control pHintControl,
PeterBlum.DES._HintDisplayMode pDisplayMode,
bool plInStatusBar, bool plInTooltip, bool pHiddenOnError);

[VB]

Function AddSharedHintOnPage(ByVal pName As String, _
Byval pDefault As Boolean,
ByVal pHintControl As Control, _
ByVal pDisplayMode As PeterBlum.DES_HintDisplayMode _
ByVal pHiddenOnError As Boolean) _
As PeterBlum_DES_Web._WebControls.HintFormatter

Function AddSharedHintOnPage(ByVal pName As String, _
ByVal pDefault As Boolean, _
ByvVal pHintControl As Control, _
ByVal pDisplayMode As PeterBlum._DES_HintDisplayMode _
ByVal plInStatusBar As Boolean, ByVal plInTooltip As Boolean, _
ByVal pHiddenOnError As Boolean) _
As PeterBlum_DES._Web._WebControls._HintFormatter

Parameters
pName
A unique name for this HintFormatter. Required.

pDefault

When true, use pName as the default for any SharedHintFormatterName property that is "{DEFAULT}" on the
controls using hints.

It sets PeterBlum.DES.Globals.WebFormDirector.HintManager.DefaultSharedHintFormatterName. It has no
affect when HintManager.DefaultSharedHintFormatterName is already assigned.

pHintControl
This points to a control where the Hint will appear.

Use a Panel, Label, any control that can have its innerHTML replaced, or any control containing a Label where the
Hint will appear.

This control has its visibility changed as focus moves in and out of the control with the hint.
The Hint text will be assigned as follows:

If this is a containing control with the Label that shows the hint, make sure that Label has the ID =
pHintControl.ID+"_Text". Otherwise, pHintControl itself will show the hint in its innerHTML.

pDisplayMode

Pass only HintDisplayMode . Static or HintDisplayMode .Dynamic. When Static, the Label
preserves is space on the page when hidden. When Dynami c, it uses no space on the page when hidden.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 136 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

pinStatusBar

When true, show the hint in the status bar of the browser. When not supplied, HintFormatter.InStatusBar is set
to false.

pinTooltip

When true, the control's tooltip is assigned the hint when there is nothing already assigned to the tooltip. The
tooltip does not support the merger of validation error messages. When not supplied, HintFormatter.InToolTip is
set to true.

pHiddenOnError

When true, do not show the hint when any validator attached to this control reports an error. This allows you to
place the Label in the same location as the validator.

Return value

The HintFormatter object that was defined.

Uses the Label “HintLabel”. That control’s ID is also used as the name of this HintFormatter. It uses the tooltip and status bar
features.

[C#]

PeterBlum.DES._Web._WebControls_HintFormatter vHF =
PeterBlum.DES.Globals._WebFormDirector._HintManager .AddSharedHintOnPage(
HintLabell._1D, HintLabell, PeterBlum.DES.HintDisplayMode.Dynamic,
true, true, false);

[VB]

Dim VHF As PeterBlum.DES.Web._WebControls.HintFormatter = _
PeterBlum.DES.Globals.WebFormDirector.HintManager .AddSharedHintPopupView(_
HintLabell_1D, HintLabell, PeterBlum.DES.HintDisplayMode.Dynamic, _
True, True, False)

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 137 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Using Your Own HintFormatter definition: AddSharedHintFormatter()

Call PeterBlum.DES.Globals._WebFormDirector _HintManager .AddSharedHintFormatter () to add
HintFormatter object that uses the exact properties you set up. This is often used when you are providing a custom
Formatting Function (HintFormatter.FormattingFunctionName) or Text Function (HintFormatter.TextFunctionName).

[C#]

void AddSharedHintFormatter(PeterBlum._DES.Web.WebControls_HintFormatter
pHintFormatter,
bool pDefault);

[VB]

Sub AddSharedHintFormatter(ByVal pHintFormatter As
PeterBlum.DES.Web.WebControls.HintFormatter, _
ByVal pDefault As Boolean)

Parameters
pHintFormatter

The HintFormatter object, with its properties fully assigned. The HintFormatter.Name must be assigned. See

pDefault

When true, use pName as the default for any SharedHintFormatterName property that is "{DEFAULT}" on the
controls using hints.

It sets PeterBlum.DES.Globals.WebFormDirector.HintManager.DefaultSharedHintFormatterName. It has no
affect when HintManager.DefaultSharedHintFormatterName is already assigned.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 138 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Defining PopupViews

A PopupView is similar to a ToolTip, created with HTML and Javascript to float near the |
control. For an overview of its features, see “When using PopupViews”. N

. . . . &
Click on any of these topics to jump to them: Enter & song ttle

® & & 6 o o

4 Adding your own Callouts to the PopupView Definition

PopupView definitions are created within the Global Settings Editor and stored in the custom.des.config file. Within
the Global Settings Editor, you can add, edit, rename, and delete definitions. In addition, you can choose one of your
PopupView definitions to be the default used when the token “{DEFAULT}” appears in a
HintFormatter.PopupViewName property by setting its name in the DefaultHintPopupViewName property.

Callout ﬁ Close Button

Header/Title The name of yaour favarite song.

Help Button

=
=
f}

Footer

Here is how to define PopupViews.

1. Open the Global Settings Editor.
It is available from the Windows Start menu, the Context menu and SmartTag on the PageManager control, and in the
[DES Product Folder].

2. Confirm that the custom.des.config file for your web application is loaded. If it is not, click the Open g button
and select it.

=&l ClinetpubwwwrootiWebSite 1\DES\custom.des.config

3. Select the PopupView definitions used by Hint Formatters topic in the list on the left.

5. Save the changes using the Save E button.

6. If you have changed the name of an existing PopupView, review your web forms in case the old name is in use. Correct
those that need it.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 139 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

View an existing definition

To view an existing definition, click on its name in the items below the PopupView definitions used by HintFormatters
topic heading. There are two views. The initial display shows the most common properties and combines a number of
properties for style sheets and callout images into a single Theme. Click the Advanced button to see a Properties Editor with
all available properties.

PopupView used by HintFormatter abjects inthe PopupViewhame property.
Default style sheet classes are provided inthe Appearance/interactive
Pages/PopupHints.css file.

PopupView used by HintFormatter objects inthe PopupViewMame property.
Default style sheet classes are provided in the Appearance/interactive
Pages/PopupHints.css file.

== A
E A

Theme |Light Yellow ~| S =
W Enable callouts CssClass DES_PHOwverallLtYellow
\nfidth 200
| Default position |BDﬂ0mnghtSidesAlign j B Body
BodyCssClass DES_PHBodyltYellow

hidth | ﬂ Bedylmagelrl
Bodylmage\ertical Align Top
HTMLAfter
HTMLAfterLockupl D
Help Behavior |Show a button that appends Help text ﬂ HTMLEefore

HTMLEeforeLockuplD
Help Button appearance - ﬂ * Text |More B Callouts

CalloutLeftRightSize 159,12
CalloutOffsetilongSide 10
CalloutTopBottomSize 12,19
CalloutUrFolder {APPEARANC E},-’Sharedf'Callouts;’LtYelj

HintHelp Property Usage

" Imagelrl |

CssClass
The Cascading Style Sheet name that is applie_ad ?(:the boxf:ontaining the
Make Global Default | Advanced popup. The default "DES_PHOwerallLtYellow™ is in PopupHints.css.

Fields on the Initial View

e Theme — DES predefines style sheets and images that correspond to these colors: Light Red, Light Blue, Alice Blue,
Light Yellow, and Light Gray. When you pick one of these, the following PopupView class properties are changed:
CssClass, HeaderCssClass, BodyCssClass, FooterCssClass, CloseButtonCssClass, HelpButtonCssClass, and
CalloutUrlFolder. If it says Custom, then you have modified at least one of these properties in the Advanced view.

e Enable Callouts — Sets the PopupView.EnableCallouts property. Callouts are the triangles projecting out of the
PopupView to point it to the control with the hint. They are gif images stored in the folder defined by
PopupView.CalloutUrlFolder. Use the Advanced View to edit the CalloutUrlFolder property.

o Default position — Sets the PopupView.DefaultPosition property. Determines the default position when the popup view
appears. If there is not enough screen space to appear in the default position, DES will reposition it.

e Width - The width of the definition in pixels. Each definition has a fixed width (although its height can change). As a
result, you usually define several definitions with the same features, but varying the width.

behaves. In most, cases it adds the Help button and determines how it behaves. Here are its values:
0 Not used - Do not use HintHelp. Do not show a Help Button.

0 Show a button that appends the help text - Usethe Help Button. When clicked, redraw with
the HintHelp text appended to the current text. The value of PopupView.AppendHelpSeparator is inserted
between the original hint and the text of HintHelp.

0 Show a button that replaces the help text - Use the Help Button. When clicked, redraw
with the HintHelp text replacing the current text.

o Show the help text in the titlebar - The HintHelp text appears in the header as the title. It is
used instead of the PopupView.HeaderText property value. There is no Help Button.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 140 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

0 Show a button that hyperlinks - Use the Help Button that acts as a hyperlink. Define the URL in
the URL field. The HintHelp text will appear in the “{0}” token.

0 Show a button that hyperlinks using another window - Use the Help Button that acts as a
hyperlink which opens in a new window. Define the URL in the URL field. The HintHelp text will appear in
the “{0}” token.

0 Show a button that runs a script-Runs the script supplied in the Script field. The HintHelp
text will replace the token “{0}” in that script.

e Help Button appearance — When Help Behavior specifies a Help button, you can use an image or text for that button.
DES predefines the L2 image and makes it available as the first radio button. Otherwise, specify the text in the Text field
or the image’s URL in the ImageUrl field.

Help Button appearance { ﬂ * Text ||""|'3"'E

" Imagelrl |

¢ Make Global Default — When clicked, this PopupView definition will become the default for all HintFormatters whose
PopupViewName property is “{DEFAULT}”. It updates the setting DefaultHintPopupViewName in the topic
“HintManager Defaults” of the Global Settings Editor.

e Advanced - Switch to the Advanced view, where you have access to every PopupView property using a Properties
Editor.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 141 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Edit a definition

To edit a definition, click on its name in the items below the PopupView definitions used by Hint Formatters topic
heading. Change the properties on either the default or Advanced view. You do not need to click anything to save your edits.
(You also cannot undo your edits without reloading the custom.des.config file.)

Add a definition

To add a definition, click the Add button in the lower right corner of the window or right click on the PopupView
definitions used by Hint Formatters topic and chose Add.

It will automatically create a name for you based on the Theme and Width. See below to rename it.
Rename a definition
Click on the name of the PopupView definition in the list, or click the Rename button when viewing the definition.

Note: The Global Settings Editor will automatically rename definitions if it created the original name and you change either
the Theme or Width field.

Delete a definition
Click on the name of the PopupView definition in the list and click the Delete button at the bottom of the window.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 142 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Creating your own Callouts

The Callout is an image file. In fact, there are 4 of these image files, one for each direction: left, right, top, and bottom. They
have these characteristics:

o Use agif file. Make all pixels “outside” of your image transparent.

e To make their borders merge with the box of the popup view, do not use a border where it intersects with the box. You
will also make the image slightly overlap the box with the CalloutLeftRightSize and CalloutTopBottomSize

properties.
[\ «— Callout Image CalloutTopBottomSize.Height
l 20 pixels high / is set to 19 to overlap
= 5|
The name of yaur favarite song. The name of your favorite song.
fore More

e The Callout image is inset along the box as determined by the CalloutOffsetAlongSide property. In the above image,
CalloutOffsetAlongSide is set to 10 pixels.

o All four image files have a specific name: Left.gif, Right.gif, Top.qgif, Bottom.gif. They all go into single folder whose
Url is specified in the CalloutUrlFolder.

@ 2}, C:\inetpub\wwwmDt\WebSitﬂ\DES\Appearance\Shared\CaIIouts\Lt‘r’eIIow
&y Organize ~ = = (@ Burn
Folders w | Name : Date modified
4 inetpub » | |_|Bottom.gif 7/25/2007 7:15 PM
> Lo AdminScripts || Left.gif 7/25/2007 715 PM
> U custerr || Right.gif 7/25/2007 T:16 PM
) ftproot || Tep.gif 7/25/2007 7:16 PM
Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 143 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Adding your own Callouts to the PopupView Definition
1. Create 4 callout image files, one for each direction.

They must be named Left.gif, Right.gif, Top.gif, and Bottom.gif. Each points in the direction taken from the
filename.

They all go in a single folder. A suggesting containing folder is
[Web application root]/DES/Appearance/Shared/Callouts. However, any folder that is accessible to your
web application through a URL is acceptable.

The Top and Bottom images should have identical dimensions to each other.

The Left and Right images should have identical dimensions to each other.

2. Inthe PopupView definition, assign these properties:

EnableCallout = true

CalloutUrlFolder = the URL to the folder. If using the suggested path: “{APPEARANCE}/Shared/Callouts/your
foldername”.

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined
as you set up the web site.

CalloutLeftRightSize.Width = The width of the Left and Right images. To overlap the PopupView box, subtract 1.
CalloutLeftRightSize.Height = The height of the Left and Right images.
CalloutTopBottomSize.Width = The width of the Top and Bottom images.

CalloutTopBottomSize.Height = The height of the Top and Bottom images. To overlap the PopupView box,
subtract 1.

CalloutOffsetAlongSide = How many pixels to offset the image along the side of the PopupView box. It defaults to
10 pixels.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 144 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Using PopupViews

For each control that needs a hint, it must have these four properties: Hint, HintHelp, SharedHintFormatterName, and
LocalHintFormatter. Most DES controls have them. For any other control, add a NativeControlExtender control. It has
these properties. (See the “General Features Guide” for this control.)

Here is how to use these properties:

© © These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. Set the text of the hint in the Hint property. It can contain HTML tags if desired. If you are using the same text in the
ToolTip property, you do not need to assign anything to Hint. It uses the ToolTip property when Hint is """ unless you

<des:control i1d="id" runat="server" Hint="your hint" />

2. Pick a PopupView definition from those defined with the Global Settings Editor. ;g ciobal settings Editor

77777777777777777777777777 = DlinetpublwwwrootiSamples

Here are the predefined values:

Value When Blank Defaults

LtYellow-Small, LtYellow-Medium, LtYellow-Large, ToolTip- Hirts and ToolTips
HirtManager Defaults

Small, ToolTip-Medium, and ToolTip-Large.

All of these are light yellow. Their widths vary from 200px to 600px. The ToolTip Yallow-Medium

definitions do not have the callout feature enabled. LiYellow-Large
Tool Tip-Small

3. Define a HintFormatter that uses the PopupView using one of these three TE;T:E.M::M
approaches: ToolTip-Largs

ChangeMonitor Defaults

e Set the web control’s SharedHintFormatterName to the name of the Popup
View. DES automatically creates a HintFormatter for you with HintFormatter.DisplayMode and
HintFormatter.PopupViewName correctly set. It will show the hint in the tooltip and status bar too. If you want to
avoid it in the tooltip or status bar, use one of these next two techniques.

<des:control id="id" runat="'server" Hint="your hint"
SharedHintFormatterName="PopupView name" />

o Define a HintFormatter object that will be shared amongst several controls on the page by adding it to the

<des:PageManager ID=""PageManagerl' runat="'server">
<HintManager>
<SharedHintFormatters>
<des:HintFormatter Name="YellowMedium™
PopupViewName="LtYel low-Medium"
InToolTip="False" InStatusBar="False" />
</SharedHintFormatters>
</HintManager>
</des:PageManager>

<des:control id="id" runat="'server™ Hint="your hint"
SharedHintFormatterName="Yel lowMedium" />

and InStatusBar=true. Take these actions
0 Set the SharedHintFormatterName property to ™. This enables the LocalHintFormatter.
0 Set the HintFormatter.PopupViewName to the name of the PopupView.

o Determine if a mouse over and/or focus action should pop it up and set that in HintFormatter.PopupAction.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 145 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

0 Consider if these properties apply: InToolTip, InStatus and TextFunctionName. (All others are used when
Display mode is not set to Popup.)

<des:control i1d="id" runat="'server"™ Hint="your hint"
SharedHintFormatterName="""
LocalHintFormatter-PopupViewName=""PopupViewName"
LocalHintFormatter-InToolTip="false" />

text, whether it is a more detailed description, a title, a URL, or a script. If left blank and HelpBehavior is ButtonAppends
or ButtonReplaces, the Help button is not shown.

<des:control id="id" runat="server" Hint="your hint" HintHelp="help text" />

5. If you also want to show validation error messages (from the DES Validation Framework) in the PopupView, use the

<des:PageManager ID=""PageManagerl' runat="'server'>
<HintManager HintsShowErrors="0OneError" />
</des:PageManager>

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 146 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Defining Hints shown on the Page

The hint control is the HTML that displays the hint. It is usually a Label control or a Panel containing a Label.
DES performs two actions on your Panel and Label controls.

e It shows and hides the control assigned to the HintFormatter.HintControlID property.

e It updates the text of the Label. (Specifically, it updates the innerHTML so it supports HTML.)

You can customize its behavior by creating a client-side function that does anything you want. It can replace DES’s ability to
change visibility and the text or it can let DES continue to do these actions while your function does other things. See

Using a Label

Add a Label to the page where you want the hint’s text to appear. You can have several of them, one for each control or for a
group of controls that share the hint’s location on the page.

<asp:Label id="HintLabel" runat="server'></asp:Label>
The Label can be substituted with any tag that allows setting its “innerHTML”, including , <p

runat=""'server'>, <td runat="server'> and <div runat="server'>. The innerHTML will always be
replaced by the hint text.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 147 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Using a Panel containing a Label

You can put the Label inside a Panel if you want it surrounded by some formatting, like a border and title. When you do so,
assign the ID of the Label to the ID of the Panel plus the text " Text".

When used, the Panel will be shown and hidden (along with the Label it contains). When not used, the Label will be shown
and hidden

Here is an example of the Panel with a Label:

<asp:Panel id="HintPanel" runat="server" width="20px">
<asp:Label i1d="HintPanel Text" runat='"server''></asp:Label>
</asp:Panel>

Itis a good idea to set the Panel’s width. Here is an example with formatting that establishes a yellow background, border,
and centers the text.

<asp:Panel id="HintPanel" runat="server' width="200px"
style=""BORDER-RIGHT:gray thin outset; BORDER-TOP:gray thin outset;
BORDER-LEFT:gray thin outset; BORDER-BOTTOM:gray thin outset;
BACKGROUND-COLOR: lightyellow; TEXT-ALIGN:center'>
<asp:Label id="HintPanel Text" runat="server'></asp:Label>
</asp:Panel>

The Panel can be substituted with almost any control that can contain child control tags, such as a Table control, TableCell
control, <table runat="'server'>, <td runat="server'> <div runat="'server'>, and <p runat="'server''> tag.

The Label can be substituted with any tag that allows setting its “innerHTML?”, including , <p
runat="'server'>, <td runat="server'>, and <div runat="server'>. The innerHTML will always be
replaced by the hint text.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 148 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Customize How Hints Appear: The Formatter Function

If you want additional control over the appearance when the hint is shown or hidden, you can provide your own JavaScript
function. You can use it to assign the hint or change appearance of the Hint control or any element on the page. Your
function returns a flag indicating if DES should still change visibility and the hint text or not.

Your function takes these parameters in the order show:

e pFld (object) — The DHTML element to which the hint is attached. The pFI1d. id attribute is often used to determine
which textbox is passed to your function. The pF1d.value contains the text currently in the textbox. For other

e pSH (boolean) - When true, show the hint. When Fal se, hide the hint. If you plan to change visibility, here are
guidelines:

o0 Show in Static mode: pCFld.style.visibility = "inherit";

o0 Show in Dynamic mode: pCFld.style.visibility = "inherit"; pCFId.style.display = "";

0 Hide in Static mode: pCFld.style.visibility = "hidden";

0 Hide in Dynamic mode: pCFld.style.visibility = "hidden"; pCFld.style.display = "none";
e pHint (string) - Text of the hint. It may contain HTML tags.

o pCFId (element) — The element that is the hint control. This is what you will be modifying. If it is a Panel, your Label is
available by using this function:

vFld = DES GetByld(pCFId.id + " _Text"™);

Itis nul I when you have nothing assigned to the HintFormatter.HintControlID property. In that case, your function
must internally know the ID of an element.

Your function must return true if it has changed visibility and the text; return false if it needs DES to change visibility
and the text.

Your function can use DES_SetlnnerHTML(ID, pHint) to change the innerHTML with the hint.

Makes a popup hint that appears below the textbox by setting the panel with absolute positioning and establishing its top and
left positions. It lets DES handle visibility and assigning the text. HintFormatter.FormatterFunctionName is assigned to
“MyCstmHint”.

Note: This popup hint technique works well only when the data entry control is not inside a “container” tag like a <div> or
<table>. Once in those, better positioning calculations are needed. The PopupView feature will handle this automatically.

<script type="text/javascript" language="javascript'>
function MyCstmHint(pFld, pSH, pHint, pCFId)

{
it (pSH)
{
pCFld.style_position = "absolute™;
pCFld.style_posLeft = pFld.offsetLeft - 5;
pCFld.style_posTop = pFld.offsetTop + pFld.clientHeight + 5;
}
return false; // let the normal processing change the hint and visibility
</script>
Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 149 of 309

http://www.peterblum.com/des/support.aspx�
http://msdn2.microsoft.com/en-us/library/ms535841.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Using Hints shown on the Page

For each control that needs a hint, it must have these four properties: Hint, HintHelp, SharedHintFormatterName, and
LocalHintFormatter. Most DES controls have them. For any other control, add a NativeControlExtender control. It has
these properties. (See the “General Features Guide” for this control.)

Here is how to use these properties:

These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View

ﬂ command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. Set the text of the hint in the Hint property. It can contain HTML tags if desired. If you are using the same text in the
ToolTip property, you do not need to assign anything to Hint. It uses the ToolTip property when Hint is """ unless you

4. Determine the locations for hints. You can have one on the page, one for each group of controls, or even one for each
control. When you put one next to a control, it can be located where Validators appear as there is a feature to prevent the
hint from showing when a Validator is shown.

5. Add the controls for hints to the page. Remember that they will be hidden until focus is set to them.
If you are using a Panel that contains a Label, make sure the Label’s ID is Panel.ID +"_Text".
6. Define a HintFormatter using one of these three approaches:

o If several controls will share a HintFormatter, add a HintFormatter object to the

programmatically.

0 Set the HintFormatter.HintControlID to the Label or Panel control where the hint is shown. When using a
Panel or other containing control, the ID must be to the Panel, not the Label.

0 Setthe HintFormatter.DisplayMode to Static, if you want to preserve the space used by the Panel or Label
when the hint is not shown. Use Dynami c to avoid using that space.

o If you positioned the Label or Panel in the same space as a validator, set HintFormatter.HiddenOnError to
true.

0 Consider if these properties apply: InToolTip, InStatus, FormatterFunctionName, and TextFunctionName.
e Otherwise, use the LocalHintFormatter property on the control:

0 Set the HintFormatter.HintControlID to the Label or Panel control where the hint is shown. When using a
Panel or other containing control, the ID must be to the Panel, not the Label.

0 Set the HintFormatter.DisplayMode to Static, if you want to preserve the space used by the Panel or Label
when the hint is not shown. Use Dynami c to avoid using that space.

o If you positioned the Label or Panel in the same space as a validator, set HintFormatter.HiddenOnError to
true.

0 Consider if these properties apply: InToolTip, InStatus, FormatterFunctionName, and TextFunctionName.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 150 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Customize the Text of the Hint: The Text Function

You can modify or replace the text of the hint prior to it being displayed. Typically this is used when you want to retrieve
some value from the page and insert it into the text. When replacing a part of the text, a good technique is to use a token, like
“{0}”. Your function can use DES_RERp 1 () function to replace tokens.

You can also disable hint from showing by returning null I from your function.

If you want to fully create the hint text on the client side, you need to set HintManager.AllowBlankHints to true so a
control whose Hint property is ™" still gets attached to the hint system.

Your function takes these parameters in the order shown here:

e pFld (object) — The DHTML element to which the hint is attached. The pFI1d. id attribute is often used to determine
which control is passed to your function. It is the ClientID value of that Control. If this is an <input>, <textarea> or
<select> element, the pFId.value contains its current value.

e pHint (string) - Text of the hint from the Hint or HintLookupID property on the control with the hint. It may contain
HTML tags. It may be blank.

e pErr (Boolean) — When true, there is a validation error on this control. This helps determine how to prepare the hint.
Your function must return one of these values:

e The string used for the hint

e " ifthe hint text is not shown but the validation error messages are shown based HintManager.HintsShowErrors.

e null to prevent showing any hint.

Assumes the hint text is “{0} characters”. Assumes that control is a textbox.

Replaces the token “{0}” with the text length of the control with the hint. If the textbox is blank, it uses an alternative string.
If text length is 1, it returns “1 character”. HintFormatter. TextFunctionName is assigned to “MyHintText”.

<script type="text/javascript” >
function MyHintText(pFld, pHint, pErr)

{
if (pFld.value 1= ")

it (pFld.value.length > 1)

return DES_RERpl(pHint, "{0}", pFld.value.length.toString());
else

return "1 character";

}

else
return ""Please enter text.';

}

</script>

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 151 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Javascript functions: Show and Hide the Hint On Demand

Sometimes a third party control has an alternative way to handle the “onfocus” and “onblur” events. (onfocus is called when
focus is set to the control; onblur is called when focus leaves the control.) You can call the DES_ShowHint() and
DES_HideHint() JavaScript functions from within the alternative event handlers of the control.

function DES_ShowHint(plID)

Displays the hint associated with the ID of the control passed. Call it when focus is established, usually in the onfocus event
handler. If that ID is unknown, nothing happens.

Parameters
pID

The ClientlD property value from the server side control. It is the value written into the §d= attribute of the HTML

DES_ShowHint("TextBox1");

function DES_HideHint(plID)

Hides the hint associated with the 1D of the control passed. Call it when focus is lost, usually in the onblur event handler. If
that 1D is unknown, nothing happens. You can also pass null and have it detect if a hint is open on any control and close it.

Parameters
pID

The ClientlID property value from the server side control. It is the value written into the §d= attribute of the HTML

DES HideHint(null); // closes whichever is open
DES_HideHint("TextBox1");

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 152 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Providing an Initialization Function

The HintFormatter object provides the InitFunctionName property for you to establish a function that is called as the page is
setup. Your function will hookup the control’s own onfocus and onblur handlers to call DES_ShowHint() and
DES_HideHint(). The function also returns a boolean value to tell DES whether it should also hookup these functions to
the standard DHTML onfocus and onblur events.

Your function takes one parameter:

o pHO (object) — The “Hint Object”. Its properties associated the hint text with the control and formatters. You will use
one or more of its properties as shown below.

Your function must return true to allow DES to also attach to the standard onfocus/onblur events or false to avoid attaching to
the standard events.

e CID (string) — The ID of the control on the page. Call DES_GetBy ld(pHO.CID) to get a reference to its DHTML
object. Pass this value as the parameter of DES_ShowHint and DES_HideHint.

e Fmt (object) — Client-side representation of the HintFormatter object. Its ID property is the ID of the Panel or Label
control on the page where the hint is displayed.

e H(string) — the Hint text. This can also be customized by the TextFunction.

e HiIp (string) - the Hint Help text.

In this ficticious control, Diall, it expects its property Events.onfocus to contain a string of javascript for the onfocus event. It
expects Events.onblur to contain a string of javascript for the onblur event. HintFormatter.InitFunctionName is assigned to
“InitDiall”.

<script type="text/javascript'” language="javascript'>
function InitDiall(pHO)

{
var vDiall = <% =Diall.ClientID %>;
vDiall.Events.onfocus = "DES _ShowHint(""™ + pHO.CID + "");";
vDiall_Events.onblur = "DES _HideHint(*" + pHO.CID + "");";
return false; // DES does not need to setup the onfocus/onblur events
}

</script>

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 153 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Adding a Hint to any Control Programmatically:
PeterBlum.DES.Globals.WebFormDirector.AddHintToControl Method

The PeterBlum.DES.Globals.WebFormDirector .HintManager.AddHintToControl () method should be
called from Page_Load(). It takes one data entry control and assigns it to a hint. Use it when the control does not have its
own Hint, HintHelp, SharedHintFormatterName or LocalHintFormatter properties and you prefer to work
programmatically instead of using the NativeControlExtender control.

This method is overloaded. Use one when you have a HintFormatter object. Use the other when you are using the
HintManager.SharedHintFormatters list.

[C#]

void AddHintToControl(Control pFocusControl,
string pHintText, string pHintHelp,
PeterBlum.DES.Web.WebControls_HintFormatter pHintFormatter,
Control pOverrideHintControl)

void AddHintToControl(Control pFocusControl,
string pHintText, string pHintHelp,
string pSharedHintFormatterName,
Control pOverrideHintControl)

[VB]

Sub AddHintToControl(ByVal pFocusControl As Control,
ByVal pHintText As String, ByVal pHintHelp As String,
ByVal pHintFormatter As PeterBlum.DES.Web.WebControls.HintFormatter,
ByVal pOverrideHintControl As Control)

Sub AddHintToControl (ByVal pFocusControl As Control,
ByVal pHintText As String, ByVal pHintHelp As String,
ByVal pSharedHintFormatterName As String,

ByVal pOverrideHintControl As Control)

Parameters
pFocusControl
The control that is assigned to the hint. It will activate the hint when it receives focus and optionally in a tooltip.
pHintText
The text of the hint. It can contain HTML tags. ENTER and LINEFEED characters are not permitted.
When this text is used in the status bar (InStatusBar property), all HTML tags are stripped.

When ", the control does not show a hint. However, it sets up the hint system in case you are using the
HintFormatter.FormatterFunctionName or HintFormatter. TextFunctionName properties to establish the text.

pHintHelp
property.
pHintFormatter

pSharedHintFormatterName

When using a HintFormatter defined in the HintManager.SharedHintFormatters property, this is the name of that
HintFormatter object.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 154 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

pOverrideHintControl

The HintFormatter specifies a HintControlID where the hint appears on the page when DisplayMode is Static
or Dynamic. You can override it with a control specified here. Overriding allows you to share a HintFormatter

object with the exception of its HintControl. (Create one HintFormatter and pass it to this method multiple times.)
When not used, pass nul 1.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 155 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Properties for the PeterBlum.DES.Web.WebControls.HintFormatter Class

e Name (string) — When adding the HintFormatter to the HintManager.SharedHintFormatters collection, this must be
assigned with a unique name (amongst those in the collection). Controls that need hints will assign this name in their
SharedHintFormatterName property to retrieve the HintFormatter.

e DisplayMode (enum PeterBlum.DES.HintDisplayMode) — Determines how the hint is displayed: on screen or in a
popup.
Use Static or Dynamic if you have a control shown on the page to output the hint. Specify the control on the page

Only use None when the hint appears in the tooltip and/or status bar, but not in a control on the page or a popup hint.
The enumerated type PeterBlum.DES.HintDisplayMode has these values:
o0 None - No hint is shown on the page or as a PopupView.

0 Static - The control appears on the page in a Label or Panel. When hidden, space is preserved. Assign the
Label or Panel to HintControlID.

o0 Dynamic - The control appears on the page in a Label or Panel. When hidden, space is not used. Assign the
Label or Panel to HintControllD.

0 Popup - A PopupView is used. The PopupViewName property must specify the name of the PopupView
definition.

It defaults to HintDisplayMode . Popup.

e HintControllD (string) — The control where the hint will be shown on the page. It must be assigned when DisplayMode
is Static or Dynamic.

When FormatterFunctionName is assigned, this control is passed into your formatter function and it decides how to
prepare the hint control.

HintControllD must assigned to a control in the same or a parent naming container. For any other naming container, use
HintControl.

It defaults to """

e HintControl (Control) — This is an alternative to HintControlID. It has the same features as HintControlID. It is
assigned a reference to a control instead of an ID. As a result, it supports controls in any naming container. It must be
assigned programmatically.

When programmatically assigning properties to a HintFormatter, it is better to use HintControl instead of
HintControlID because DES operates faster using HintControl.

e FormatterFunctionName (string) — Assign to the name of a JavaScript function that will be called as the hint control is
shown or hidden. It allows you to customize the HintControl based on conditions at the time the hint is requested. See

When "", no formatter function is set up. It defaults to "".

ALERT: Many users make the mistake of assigning JavaScript code to this property. This will cause JavaScript errors.
GOOD: “MyFunction”. BAD: “MyFunction();”” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of this property exactly matches the function definition.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 156 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

PopupViewName (string) — Determines which globally defined PopupView is used. Specify the name or use

Here are the predefined values:

LtYellow-Small, LtYellow-Medium, LtYel low-Large, ToolTip-Small, ToolTip-Medium, and
ToolTip-Large.

All of these are light yellow. Their widths vary from 200px to 600px. The ToolTip definitions do not have the callout
feature enabled.

When "{DEFAULT}", it selects the name from the global setting DefaultHintPopupViewName, which is defined in the
Global Settings Editor. For ToolTips on controls that don't have an associate Hint, it selects the name from the global
setting DefaultTool TipPopupViewName, which is defined in the Global Settings Editor.

When "", it uses the factory default PopupView, which is a light yellow style, Width=200px,

When the name is specified here is unknown, it also uses the factory default. This allows the software to operate if the
you change the name of a global value and forget to change the name in this property.

It defaults to "{DEFAULT}".

OverriddenPopupView (PeterBlum.DES.Web.WebControls.HintPopupView) — Overrides the value in
PopupViewName with an instance of your own PeterBlum_DES_Web.WebControls.HintPopupView class
to establish the appearance of the popup hint box.

When nul I, PopupViewName is used.

It defaults to nul I.

If you want to start with one of the Hint PopupViews defined in the Global Settings Editor, use the
GlobalToOverriddenPopupView() method to set up OverriddenPopupView. Then edit the properties of
OverridePopupView to customize it. See the example below.

[C#]

PeterBlum.DES.Web.WebControls.HintPopupView vPV = new HintPopupView();
VvPV_HelpBehavior = PeterBlum.DES._HelpBehavior._.ButtonReplaces;

VvPV.Width = new Unit('350px™);

VPV .DefaultPosition = PeterBlum.DES.DefaultViewPosition.BottomCentered;
VvHintFormatter.OverriddenPopupView = VvPV;

[VB]
Dim vPV As PeterBlum.DES.Web.WebControls._HintPopupView = New HintPopupView()
VvPV.HelpBehavior = PeterBlum.DES_HelpBehavior.ButtonReplaces
VvPV.Width = New Unit('350px")
VvPV.DefaultPosition = PeterBlum.DES.DefaultViewPosition.BottomCentered
vHintFormatter.OverriddenPopupView = vPV

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 157 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

The HintFormatter .Global ToOverriddenPopupView() method populates the OverriddenPopupView
based on a PopupView defined in the Global Settings Editor. It has one parameter, the name of the PopupView. It
returns an instance of the PopupView, which you can edit. You don’t need to assign it to OverriddenPopupView.

[CH]

PeterBlum.DES._Web._WebControls_HintPopupView vPV =
vHintFormatter.GlobalToOverriddenPopupView("'"MyPopupView') ;

VvPV_HelpBehavior = PeterBlum.DES._HelpBehavior._.ButtonReplaces;

VvPV.Width = new Unit(*'350px");

VvPV._DefaultPosition = PeterBlum.DES.DefaultViewPosition.BottomCentered;

[VB]

Dim vPV As PeterBlum.DES.Web._WebControls.HintPopupView = _
vHintFormatter.GlobalToOverriddenPopupView("'"MyPopupView')

vPV_HelpBehavior = PeterBlum.DES.HelpBehavior.ButtonReplaces

vPV.Width = New Unit(*'350px'")

VvPV._DefaultPosition = PeterBlum._DES._DefaultViewPosition.BottomCentered

e PopupAction (enum PeterBlum.DES.HintPopupAction) — Used when DisplayMode=Popup to determine the events
that display the PopupView.

The enumerated type PeterBlum.DES_HintPopupAction has these values:
0 Focus - The control has focus.
0 MouseOver — The mouse passes over the control, like a tooltip.
0 Both - The control has focus or the mouse passes over it.
o]

Default - Get the value from the PageManager.HintManager.DefaultPopupAction property. If you don’t
use the PageManager, its set in PeterBlum.DES.Globals.GetWebFormDirector().Hint-
Manager.DefaultPopupAction. This is the default.

e InStatusBar (Boolean) — When true, the hint text appears in the browser’s status bar. When false, it does not.
HTML tags in the hint text are stripped before showing it in the status bar.
It defaults to False.

e InToolTip (Boolean) — When true, show the Hint as the tooltip, but only if the ToolTip (and ToolTipLookupID)
property on the control is empty. It defaults to true.

Since the tooltip is not activated by focus on the control, its text is static, not influenced by HiddenOnError. It will strip
out HTML tags found in the Hint property automatically.

e HiddenOnError (Boolean) — When true, do not show the hint in the hint control when any Validator attached to this
TextBox reports an error “inline” or is showing its NoErrorFormatter. It defaults to false.

This allows the user to place the hint control in the same location as a Validator. Recommendation: Set DisplayMode to
Dynamic.

This property has no effect on showing the hint in the status bar because it never conflicts with a Validator on the page. It
has no effect if the validator has its ErrorFormatter.Display property set to None and is not using the
NoErrorFormatter.

Validation errors can also be blended into the Hint Control using the HintManager.HintsShowErrors property. (See
the next section.) When HiddenOnError is true, it overrides HintManager.HintsShowErrors.

e TextFunctionName (string) — Assign to the name of a JavaScript function that customizes the hint text before the hint is
shown. See “Customize the Text of the Hint: The Text Function”.

When ", no text function is set up. It defaults to ™.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 158 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

ALERT: Many users make the mistake of assigning JavaScript code to this property. This will cause JavaScript errors.
GOOD: “MyFunction”. BAD: “MyFunction();”” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of this property exactly matches the function definition.

e InitFunctionName (string) — Assign to the name of a JavaScript function that establishes the onfocus and onblur events

When ", no initialization function is set up. It defaults to "".

ALERT: Many users make the mistake of assigning JavaScript code to this property. This will cause JavaScript errors.
GOOD: “MyFunction”. BAD: “MyFunction();”” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of this property exactly matches the function definition.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 159 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Properties on the PeterBlum.DES.Globals.WebFormDirector.HintManager
Property

The following properties are on the HintManager property of the PageManager control and

default values for these properties using the Global Settings Editor. Each property will identify the name to set in the
Global Settings Editor.

e SharedHintFormatters (PeterBlum.DES.Web.WebControls.HintFormattersList) — A collection of HintFormatters
shared by the controls on this page.

This list is optional. Controls specify the name of a HintFormatter from this list in their SharedHintFormatterName
property.
Each HintFormatter must have its Name property assigned and each must have a unique name within the list.

This list can optimize a page because it reduces the amount of javascript written. Instead of one HintFormatter per
control, there is one for a group of controls.

It also makes a centralized place for the formatting definitions, so you can make a change in one place and affect all
associated controls.

e DefaultSharedHintFormatterName (string) — When the SharedHintFormatterName is the text "{DEFAULT?}", it is
replaced by this value. It allows a page-level default.

When "", TextBoxes and the MultiSegmentDataEntry control will automatically use the HintFormatter defined in their
own LocalHintFormatter property.

It defaults to """

e HintsShowErrors (enum PeterBlum.DES.Web.WebControls.HintsShowErrors) — Determines if error messages are
shown in the Hint Control. The enumerated type PeterBlum.DES.Web.WebControls.HintsShowErrors has these values:

0 Hint - Show only the hint text. If there is no hint text, nothing is shown.

0 OneErrorAndHint - Show the error message of first validator reporting an error and the hint text.
0 AllErrorsAndHint - Show all error messages of all validators reporting an error and the hint text.
0 OneError - Show the error message of first validator reporting an error. The hint text is not shown.
o0 AllErrors - Show all error messages of all validators reporting an error. The hint text is not shown.

It defaults to the DefaultHintsShowErrors property in the Global Settings Editor, which defaults to
HintsShowErrors_Hint.

e HintsShowErrorsCssClass (string) — When showing error messages in the Hint Control, use this to change the style
sheet class name of the entire Hint Control. For example, change the background color to make it obvious that it’s
showing an error.

When ", it is not used.
It defaults to the DefaultHintsShowErrorsCssClass property in the Global Settings Editor, which defaults to "'

e HintsShowErrorsCssClass2 (string) — When showing error messages in the Hint Control, use this to change the style
sheet class name of the text for error messages. This does not effect the overall Hint Control’s style nor the hint text, if
not shown. It helps make the error messages stand out from the hint text.

When ", it is not used.
It defaults to the DefaultHintsShowErrorsCssClass2 property in the Global Settings Editor, which defaults to "".

e HintsShowErrorsSeparator (string) — When showing error messages in the Hint Control, there may be several pieces
of text joined together. This provides text that goes between the text. Since this will appear on a web page, use HTML
for formatting like spaces (“nbsp;”) and newline (“
").

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 160 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

It defaults to the DefaultHintsShowErrorsSeparator property in the Global Settings Editor, which defaults to
" ".

e ToolTipsAsHints (enum PeterBlum.DES.TrueFalseDefault) — When a control has its ToolTip property assigned and its
Hint property unassigned, setup a hint with the same text as the tooltip. By default, this feature is enabled.

This feature does not apply to every control. It is limited to data entry controls, where focus can be established. For all
other controls, you must explicitly setup the Hint property. Supported control types: TextBox, ListBox, DropDownList,
RadioButtonList, CheckBoxList, RadioButton, CheckBox, and any control that supports the ValidationPropertyAttribute
(which allows many third party controls to be included.)

The enumerated type PeterBlum.DES. TrueFalseDefault has these values:
0 True - ToolTips are used as hints.
0 False - Do not use ToolTips as hints.

o0 Default - Determine if ToolTips are used as Hints from the global setting DefaultToolTipsAsHints, defined
in the “HintManager Defaults” section of the Global Settings Editor. The global default is true.

It defaults to TrueFalseDefault.Defaul t.

o AllowBlankHints (Boolean) — Normally hints are not created if the hint text is blank. This sets up the control to use a
hint, when its hint text is blank. Used when you use the HintFormatter. TextFunctionName property.

It defaults to False.

e DefaultPopupAction (enum PeterBlum.DES.HintPopupAction) — Used when HintFormatter.DisplayMode=Popup to
determine the events that display the PopupView.

The enumerated type PeterBlum.DES.HintPopupAction has these values:
0 Focus - The control has focus. This is the default.
0 MouseOver - The mouse passes over the control, like a tooltip.
0 Both - The control has focus or the mouse passes over it.
o0 Default- Same as Focus.

e PopupOnFocusDelay (Integer) - When using a PopupView for a hint, this is the time delay between when the focus
enters the control until it pops up.

The value is in milliseconds.
If 0, it pops up immediately.
It defaults to 350 (>1/3 second).
e EnableToolTipsUsePopupViews (enum PeterBlum.DES.TrueFalseDefault) — Enables displaying tooltips in

When enabled, controls that are using hints, tooltips or the NativeControlExtender can switch from the standard browser
tooltip to a PopupView defined in the Hints system.

The enumerated type PeterBlum.DES. TrueFalseDefault has these values:
0 True - Enable the Enhanced ToolTips feature.

0 False - Do not use the Enhanced ToolTips feature. ToolTips are defined by the browser’s standard tooltip
mechanism.

o0 Default - Determine if the feature is enabled from the global setting
DefaultEnableTool TipsUsePopupViews, defined in the “HintManager Defaults” section of the Global
Settings Editor. The global default is False.

It defaults to TrueFalseDefault.Defaul t.

¢ HintShowTextCounterSeparator (string) — Used with by TextCounter control to establish a separator between the
actual hint text and the text from the TextCounter message.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 161 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

It defaults to the DefaultHintsShowTextCounterSeparator property in the Global Settings Editor, which defaults
to “
,

If you want the TextCounter message to appear first, use the token “{~3}" as the first element of the
HintShowTextCounterSeparator property.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 162 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES

A moouLe oF PETERS OATA ENTRY SUITEVS

Properties for the PeterBlum.DES.Web.WebControls.HintPopupView Class

The PeterBlum.DES.Web.WebControls.HintPopupView class contains a PopupView definition. You normally
edit these in the Global Settings Editor. You can also create them for use with the HintFormatter.OverriddenPopupView

property.

i

The name of your favarite song.

More

Click on any of these topics to jump to them:

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved

Page 163 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Overall Appearance Properties

CssClass (string) — The Cascading Style Sheet name that is applied to the overall control. Use to define the background
and border.

It defaults to “DES_PHOverallLtYel low”.
These styles are declared in DES/Appearance/Interactive Pages/PopupHints.css:

-DES_PHOverallLtYellow
{
border-right: black 1lpx solid;
border-top: black 1px solid;
border-left: black 1px solid;
border-bottom: black 1px solid;
font-family: Arial;
font-size: 8pt;
color: Black;
background-color: #fFFffe0; /* lightyellow */
}
/* default font for all nested tables in the control */
-DES_PHOverallLtYellow TABLE
{
font-family: Arial;
font-size: 8pt;
}

/* prevent external img styles from affecting these styles */
.DES_PHOverallLtYellow img

{
background-color:transparent;
margin-left: Opx;
margin-top: Opx;
margin-bottom:0px;
margin-right:0px;

}

In addition, the style sheet file contains these alternatives which just change the background-color attribute:
DES_PHOveralILtBlue

DES_PHOveral lLtGray

DES_PHOveral ILtRed

Width (System.Web.UIl.WebControls.Unit) — The width of the PopupView (excluding any callouts). The width is a
fixed value. The height varies based on hint text.

Create different width PopupView definitions for any appearance you want.

It defaults to 200px

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 164 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Header Properties
I

b,

&=

TiIEIIGIIIE L=R ' =Le] IG‘:".'Iii.E .
| More

o HeaderTitle (string) — Optional text shown in the header. It supports HTML.
When ", no title is offered. The header is hidden if also ShowCloseButton is false.
It defaults to """

o HeaderTitleLookuplD (string) — Gets the value for HeaderTitle through the String Lookup System. (See “String
Lookup System” in the General Features Guide.) The LookuplD and its value should be defined within the String
Group of PopupViews. If no match is found OR this is blank, HeaderTitle will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookuplD and associated textual value in your data source (resource, database, etc). Assign the same
LookuplID to this property.

It defaults to "".

header.
It defaults to HorizontalAlign.Left.

e HeaderCssClass (string) — The Cascading Style Sheet name that is applied to the header.
It defaults to “DES_PHHeaderLtYel low”.

This style is declared in DES/Appearance/interactive Pages/PopupHints.css:

.DES_PHHeaderLtYellow

{
background-color: #FFFf99; /* darker version of LightYellow */

font-size: 8pt;

/* add this if you allow dragging and want to emphasize that fact
Cursor: move;

*/

}

In addition, the style sheet file contains these alternatives which just change the background-color attribute:
DES_PHHeaderLtBlue

DES PHHeaderLtGray

DES_PHHeaderLtRed

e ShowCloseButton (Boolean) — Show the Close button in the header, on the right side. It will use CloseButtonlmageUrl
or CloseButtonText to determine its appearance. If CloseButtonlmageUrl is assigned, an image is shown. If
CloseButtonlmageUrl is ", a hyperlink is shown using the CloseButtonText.

It defaults to true.

e CloseButtonlmageUrl (string) — The Url to an image for the Close Button.
If supplied, an image is shown with the tooltip and Image Alt= text from CloseButtonText.
It defaults to "{APPEARANCE}/Shared/CloseCmd.gif" (E).

DES also includes this image: = To use it, assign CloseButtonImageUrl to
"{APPEARANCE}/Shared/CloseCmd2.gif".

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 165 of 309

http://www.peterblum.com/des/support.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.horizontalalign.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined as
you set up the web site.

Supports the use of the tilde (~) as the first character to be replaced by the virtual path to the web application.

You can have images for pressed and mouseover effects as well as the normal image. The names of the image files
determine their purpose. Define the name of the normal image. For example, “myimage.gif”. Create the pressed version
and give it the same name, with “Pressed” added before the extension. For example, “myimagepressed.gif”. Create the
mouseover version and give it the same name, with “MouseOver” added before the extension. For example,
myimagemouseover.gif.

The CloseButtonlmageUrl property should refer to the normal image. DES will detect the presence of the other two
files. If any are missing, DES continues to use the normal image for that case. Note: Auto detection only works when the
URL is a virtual path to a file. You can manage this capability with the

If you need more control over paths for pressed and mouseover images, you can embed up to 3 URLS into this property
using a pipe (|) delimited list. The order is important: normal | pressed |mouseover. If you want to omit the
pressed image, use: normal | [mouseover. If you want to omit the mouseover image, use: normal | pressed.

e CloseButtonText (string) — The text for the Close Button. When CloseButtonlmageUrl is used, this is the alternative
text for the image.

When CloseButtonlmageUrl is ", this is the text of a hyperlink.
It defaults to "[x]".

e CloseButtonTextLookuplD (string) — Gets the value for CloseButtonText through the String Lookup System. (See
“String Lookup System” in the General Features Guide.) The LookuplD and its value should be defined within the
String Group of PopupViews. If no match is found OR this is blank, CloseButtonText will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookuplD and associated textual value in your data source (resource, database, etc). Assign the same
LookuplD to this property.

It defaults to """,
e CloseButtonCssClass (string) — The Cascading Style Sheet name that is applied to the Close Button in the header.

You can define pressed and mouseover styles by using the same style sheet class name plus the text “Pressed” or
“MouseOver”. These styles will merge with the style sheet class defined here. So any properties in the pressed and
mouseover classes will overrided properties in this, but not the entire style.

If blank, it is not used.
It defaults to “DES_CloseButtonLtYel low”.

These styles are declared in DES/Appearance/Interactive Pages/PopupHints.css:

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 166 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

-DES CloseButtonLtYellow

{
cursor: default;
color: #696969; /* dimgray */
font-size:8pt;
background-color:White;
}
.DES_CloseButtonLtYel lowPressed
{
color: black;
}
.DES_CloseButtonLtYel lowMouseOver
{
color: #a9%9a9a9; /* darkgray */
}

In addition, the style sheet file contains these alternatives (which have identical attributes but are selected depending to
the desired color scheme):

DES_PHCloseButtonLtBlue
DES_PHCloseButtonLtGray
DES_ PHCloseButtonLtRed

e CloseButtonToolTip (string) — The ToolTip for the Close button.
It defaults to “Close™.

e CloseButtonTool TipLookuplD (string) — Gets the value for CloseButtonToolTip through the String Lookup System.
(See “String Lookup System” in the General Features Guide.) The LookuplD and its value should be defined within
the String Group of PopupViews. If no match is found OR this is blank, CloseButtonToolTip will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookuplD and associated textual value in your data source (resource, database, etc). Assign the same
LookuplD to this property.

It defaults to """

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 167 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Body Properties

i\

The name of your favorite song.

3|

fore

e BodyCssClass (string) — The style sheet class name used for the body. It contains the text of the hint, so use it to
establish the font of the hint and margins around that text.

It defaults to “DES_PHBodyLtYel low”.
These styles are declared in DES/Appearance/Interactive Pages/PopupHints.css:
-DES_PHBodyLtYel low

{
cursor: default;
margin-left: 5px;
margin-right: 5px;
margin-bottom: 5px;
}

/* when using HelpBehavior=ButtonAppend, the HelpSeparator
may contain an <hr> tag. This helps set its style. */
-DES_PHBodyLtYellow hr

{

}

In addition, the style sheet file contains these alternatives (which have identical attributes but are selected depending to
the desired color scheme):

DES_PHBodyLtBlue
DES_PHBodyLtGray
DES_PHBodyL tRed
e BodylmageUrl (string) — The Url to an image that appears to the left of the message text in the body.

If supplied, it appears to the left of the message text using a two column table. Use BodylmageVerticalAlign to
determine how the image is positioned within its table cell.

There is a global default in the DefaultHintPopupViewBodylmageUrl property of the Global Settings Editor.
Assign BodylmageUrl to “{DEFAULT?}” to use the global default. It is unassigned by default.

It defaults to "{DEFAULT}".

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined as
you set up the web site.

Supports the use of the tilde (~) as the first character to be replaced by the virtual path to the web application.

You can have images for pressed and mouseover effects as well as the normal image. The names of the image files
determine their purpose. Define the name of the normal image. For example, “myimage.gif”. Create the pressed version
and give it the same name, with “Pressed” added before the extension. For example, “myimagepressed.gif”. Create the
mouseover version and give it the same name, with “MouseOver” added before the extension. For example,
myimagemouseover.gif.

The BodylmageUr| property should refer to the normal image. DES will detect the presence of the other two files. If any
are missing, DES continues to use the normal image for that case. Note: Auto detection only works when the URL is a
virtual path to a file. You can manage this capability with the

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 168 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

If you need more control over paths for pressed and mouseover images, you can embed up to 3 URLSs into this property
using a pipe (]) delimited list. The order is important: normal | pressed | mouseover. If you want to omit the
pressed image, use: normal | |mouseover. If you want to omit the mouseover image, use: normal | pressed.

e BodylmageVerticalAlign (enum System.Web.Ul.WebControls.Vertical Align) — The vertical alignment of the image
identified by BodylmageUrl.

It defaults to VerticalAlign.Top
e HTMLBefore (string) — Include HTML that appears before the hint text.
It defaults to ™"

o HTMLBeforeLookuplD (string) — Gets the value for HTMLBefore through the String Lookup System. (See “String
Lookup System” in the General Features Guide.) The LookuplD and its value should be defined within the String
Group of PopupViews. If no match is found OR this is blank, HTMLBefore will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookuplD and associated textual value in your data source (resource, database, etc). Assign the same
LookuplD to this property.

It defaults to """,
o HTMLATfter (string) — Include HTML that appears after the hint text.
It defaults to "

o HTMLAfterLookuplD (string) — Gets the value for HTMLAfter through the String Lookup System. (See “String
Lookup System” in the General Features Guide.) The LookuplD and its value should be defined within the String
Group of PopupViews. If no match is found OR this is blank, HTMLAfter will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookuplD and associated textual value in your data source (resource, database, etc). Assign the same
LookuplD to this property.

It defaults to "".

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 169 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Footer Properties

i\

The name of your favorite song.

&

| fore |

e HelpButtonlmageUrl (string) — The Url to an image for the Help Button.

If supplied, an image is shown with the image’s Alt= text from HelpButtonText.

It defaults to "', DES includes a Help button image in “{APPEARANCE}/Shared/HelpCmd.gif" (3).

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined as
you set up the web site.

Supports the use of the tilde (~) as the first character to be replaced by the virtual path to the web application.

You can have images for pressed and mouseover effects as well as the normal image. The names of the image files
determine their purpose. Define the name of the normal image. For example, “myimage.gif”. Create the pressed version
and give it the same name, with “Pressed” added before the extension. For example, “myimagepressed.gif”. Create the
mouseover version and give it the same name, with “MouseOver” added before the extension. For example,
myimagemouseover.gif.

If you need more control over paths for pressed and mouseover images, you can embed up to 3 URLSs into this property
using a pipe (]) delimited list. The order is important: normal | pressed | mouseover. If you want to omit the
pressed image, use: normal | [mouseover. If you want to omit the mouseover image, use: normal | pressed.

e The HelpButtonImageUrl property should refer to the normal image. DES will detect the presence of the other two
files. If any are missing, DES continues to use the normal image for that case. Note: Auto detection only works when the
URL is a virtual path to a file. You can manage this capability with the

e HelpButtonText (string) — The text for the Help Button. When HelpButtonlmageUrl is used, this is the alternative text
for the image.

When HelpButtonImageUrl is ", this is the text of a hyperlink.
It defaults to "More".

e HelpButtonTextLookuplD (string) — Gets the value for HelpButtonText through the String Lookup System. (See
“String Lookup System” in the General Features Guide.) The LookuplD and its value should be defined within the
String Group of PopupViews. If no match is found OR this is blank, HelpButtonText will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookuplID and associated textual value in your data source (resource, database, etc). Assign the same
LookuplD to this property.

It defaults to """,
e HelpButtonCssClass (string) — The Cascading Style Sheet name that is applied to the Help Button in the footer.

You can define pressed and mouseover styles by using the same style sheet class name plus the text “Pressed” or
“MouseOver”. These styles will merge with the style sheet class defined here. So any properties in the pressed and
mouseover classes will overrided properties in this, but not the entire style.

If blank, it is not used.
It defaults to “DES_PHHelpButtonLtYel low”.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 170 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

These styles are declared in DES/Appearance/Interactive Pages/PopupHints.css:

-DES_PHHelpButtonLtYellow
{

cursor: default;

color: #696969; /* dimgray */
font-size:8pt;
text-decoration:underline;

-DES_PHHelpButtonLtYellowPressed

color: black;
text-decoration:underline;

-DES_PHHelpButtonLtYel lowMouseOver

color: #a9a9%9a9; /* darkgray */
text-decoration:underline;

}

In addition, the style sheet file contains these alternatives (which have identical attributes but are selected depending to
the desired color scheme):

DES_PHHelpButtonLtBlue
DES_PHHelpButtonLtGray
DES_PHHelpButtonLtRed
e FooterCssClass (string) — The Cascading Style Sheet name that is applied to the footer
It defaults to “DES_PHFooterLtYel low”.
This style is declared in DES/Appearance/lnteractive Pages/PopupHints.css:

.DES_PHFooterLtYellow

{
}

In addition, the style sheet file contains these alternatives which just change the background-color attribute:
DES_PHFooterLtBlue

DES_PHFooterLtGray

DES_ PHFooterLtRed

the footer.

It defaults to HorizontalAlign_Right

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 171 of 309

http://www.peterblum.com/des/support.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.horizontalalign.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Ca

llout Properties

N\

The name of your favorite zong.

&

hare

EnableCallouts (Boolean) — When true, the callout graphics are added. Only one appears at a time, based on the
positioning of the messagebox.

A callout is a graphic inserted between the positioning control and the PopupView to make the entire presentation look
like a callout in a cartoon.

Requires CalloutUrls and CalloutOffsets to be defined.
NOTE: When set, the UseShadowEffect property is ignored because it generates a poor appearance with callouts.

It defaults to true.

CalloutUrlFolder (string) — The URL to folder that contains four image files for the callouts. The files must be
transparent gifs with the names: Left.gif, Top.gif, Right.gif, and Bottom.gif.

There are several predefined callout folders, each with a set of images that work together with the predefined style sheets
in DES/Appearance/Interactive Pages/PopupHints.css. They are:

{APPEARANCE}/Shared/Callouts/AliceBlue
{APPEARANCE}/Shared/Callouts/LtRed
{APPEARANCE}/Shared/Callouts/LtBlue
{APPEARANCE}/Shared/Callouts/LtYel low
{APPEARANCE}/Shared/Callouts/LtGray
{APPEARANCE}/Shared/Cal louts/Mistyrose

Always define the size of these images using CalloutTopBottomSize and CalloutLeftRightSize. The sizes of the
predefine callout files predefined in these properties: 20 tall and 12 wide.

It defaults to “{APPEARANCE}/Shared/Cal louts/LtYel low” which has these images:

N = =

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined as
you set up the web site.

Supports the use of the tilde (~) as the first character to be replaced by the virtual path to the web application.

in CalloutUrlFolder. It is used in positioning the PopupView box. As a result, if it’s slightly larger, the entire callout
will be moved away from the target. If it’s smaller, it will overlap the PopupView box.

If you have a border around the PopupView box and the outside edges of the callout, subtract the number of pixels used
to make the border.

It defaults to Width=19 and Height=12.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 172 of 309

http://www.peterblum.com/des/support.aspx�
http://msdn2.microsoft.com/en-us/library/system.drawing.size.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

e CalloutTopBottomSize (System.Drawing.Size) — The actual width and height of the Top.gif and Bottom.gif images

defined in CalloutUrIFolder. It is used in positioning the PopupView box. As a result, if it’s slightly larger, the entire
callout will be moved away from the target. If it’s smaller, it will overlap the PopupView box.

If you have a border around the PopupView box and the outside edges of the callout, subtract the number of pixels used
to make the border.

It defaults to Width=12 and Height=19.

e CalloutOffsetIintoAnchorPercent (integer) — Determines how much to offset the callout into the body of the anchor
control - the control that the callout points to. It is a percentage where 0 is the top or left and 100 is the bottom or right.

Generally avoid using values near 100 as the callout may exceed the boundaries of the PopupView.
It defaults to 50 (percent).

e CalloutOffsetAlongSide (integer) — Determines the minimum offset for the callout from the nearest corner so it is not
flush with that corner. The value is in pixels.

It defaults to 10 (pixels).

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 173 of 309

http://www.peterblum.com/des/support.aspx�
http://msdn2.microsoft.com/en-us/library/system.drawing.size.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Positioning Properties

e DefaultPosition (enum PeterBlum.DES.PopupViewPosition) — Positions the PopupView relative to the target control.
At runtime, the position may change if the PopupView either overlaps the target control or the limits of the viewable
space.

Use HorizPositionOffset and VerticalPositionOffset to offset from the selected position by a specific number of pixels.
The enumerated type PeterBlum._.DES.PopupViewPosition has these values:
0 LeftCentered - Horizontal alignment: Left of the target. Vertical alignment: Centered

o LeftTopsAlign - Horizontal alignment: Left of the target. Vertical alignment: top of target aligns with top
of popup view

0 RightCentered - Horizontal alignment: Right of the target. Vertical alignment: Centered

0 RightTopsAlign - Horizontal alignment: Right of the target. Vertical alignment: top of target aligns with
top of popup view

0 BottomCentered - Horizontal alignment: Centered. Vertical alignment: Below the target

0 BottomLeftSidesAlign - Horizontal alignment: Left sides of popup and target align. Vertical alignment:
Below the target

0 BottomRightSidesAlign - Horizontal alignment: Right sides of popup and target align. Vertical
alignment: Below the target

0 TopCentered - Horizontal alignment: Centered. Vertical alignment: Above the target

0 TopLeftSidesAlign - Horizontal alignment: Left sides of popup and target align. Vertical alignment:
Above the target

o0 TopRightSidesAlign - Horizontal alignment: Right sides of popup and target align. Vertical alignment:
Above the target

It defaults to PopupViewPosition.BottomRightSidesAlign.

e HorizPositionOffset (short) — Adjusts the Horizontal position of the popup by a number of pixels to allow more precise
positioning for DefaultPosition.

If negative, the popup panel moves left. Positive moves right. Zero does nothing.
It defaults to 5.

e VertPositionOffset (short) — Adjusts the vertical position of the popup by a number of pixels to allow more precise
positioning for DefaultPosition.

If negative, the popup panel moves up. Positive moves down. Zero does nothing.
It defaults to 5.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 174 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Other Properties

e HelpBehavior (enum PeterBlum.DES.HelpBehavior) — Determines how the HintHelp property (on the control with the
hint) is used.

The enumerated type PeterBlum.DES.HelpBehavior has these values:
0 None - Do not use HintHelp. Do not show a Help Button.

0 ButtonAppends - Use the Help Button. When clicked, redraw with the HintHelp text appended to the
current text. The value of PopupView.AppendHelpSeparator is inserted between the original hint and the text
of HintHelp.

0 ButtonReplaces - Use the Help Button. When clicked, redraw with the HintHelp text replacing the current
text.

o Title-The HintHelp text appears in the header as the title. It is used instead of the PopupView.HeaderText
property value. There is no Help Button.

0 Hyperlink - Use the Help Button that acts as a hyperlink. Define the URL in the
HyperlinkUrlForHelpButton property. The HintHelp text will appear in the “{0}” token.

o0 HyperlinkNewWindow — Use the Help Button that acts as a hyperlink which opens in a new window.
Define the URL in the HyperlinkUrlForHelpButton property. The HintHelp text will appear in the “{0}”
token.

0 Script-Runs the script supplied in the ScriptForHelpButton property. The HintHelp text will replace the
token “{0}” in that script.

It defaults to He lpBehavior .ButtonAppends.

e HyperlinkUrlForHelpButton (string) — Used when HelpBehavior is Hyperlink or Hyper l inkNewWindow. It
defines the URL of the Hyperlink.

Create a full URL that will be used in the href= attribute of the A tag. It can contain the token "{0}" to be replaced by the
HintHelp value of the control requesting your PopupView. That token is used to differentiate elements of URLS, such as
the page or querystring parameter. For example:

http://www.mywebsite.com/help?helpid={0}
The entire value can be "{0}" if the HintHelp value contains the complete URL.
It defaults to "{0}".

e ScriptForHelpButton (string) — Used when HelpBehavior is Script. It defines the script to invoke when the button is
clicked.

The token "{0}" is replaced by the HintHelp text. Use it to customize the script. For example:
alert("{0}");

WARNING: When the token is inside a string, like in the above example, the HintHelp property should not contain the
same quote characters that enclose the string. For example, the text “Peter’s Software” is illegal. It will cause a
JavaScript error.

This script should be valid javascript. It should not start with "javascript:".
It defaults to """

e AppendHelpSeparator (string) — Used when HelpBehavior is ButtonAppends. It is inserted between the initial text
and the help text.

It supports HTML.
Typical separators are
and <hr />.

It defaults to “<hr />,

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 175 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

e Draggable (enum PeterBlum.DES.PopupViewDraggable) — Determines if the user can drag the popupview.
The enumerated type PeterBlum.DES.PopupViewDraggable has these values:
0 No - Itis not supported.
0 Header - Only by dragging the header area, like a title bar
o Al - All elements, except buttons, are draggable.
It defaults to PopupViewDraggable .Header.

e UseOpaqueEffect (Boolean) — When true and on a browser that supports Opacity, the entire view is slightly opaque to
show its underlying info at various times.

Rules for opacity:
0 When the mouse moves over the PopupView, it immediately brightens in about .5 second.
0 When the mouse leaves the PopupView, it starts to dim after 2 seconds and finishes .5 seconds later.

0 When focus is placed into a control that shows the PopupView, it brightens in about .5 second and stays that
way until focus changes. Usually the only way to do that is clicking the Help button.

It defaults to true.

Opacity behaviors can be adjusted in the “Visual Effects” topic of the Global Settings Editor with these properties:

o0 MinimumOpaquePercent (integer) — When UseOpaqueEffect is true on a PopupView definition, this is the
value of opacity used as the minimum opacity.

Opacity has a range between 10 and 99, which represents a percentage of opacity. 100 is solid. 0 is transparent.
It defaults to 90.

o0 MaximumOpaguePercent (integer) — When UseOpaqueEffect is true on a PopupView definition, this is the
value of opacity used as the maximum opacity.

Opacity has a range between 10 and 99, which represents a percentage of opacity. 100 is solid. 0 is transparent.
It defaults to 100.

0 OpaqueFadeDelay (integer) — When UseOpaqueEffect is true on a PopupView definition, this is the
number of milliseconds before fading begins.

The value is in milliseconds.
If 0, it fades immediately.
It defaults to 2000 (2 seconds).

o UsePopupEffect (Boolean) — When using Internet Explorer for Windows 5 and higher, this applies an animation to the
opening and closing of the popup. It uses the Filters feature which are set up globally.

When true and Internet Explorer is in use, filters are applied.
It defaults to true.

o UseShadowEffect (Boolean) — When true and on Internet Explorer 5.5+ for Windows, a shadow effect is applied.
If Callouts are used, this property is ignored because Callouts perform poorly with shadows.

It defaults to true.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 176 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

IEFixPopupOverList (Boolean) — Internet Explorer for Windows versions 5.0 through 6. have a problem allowing
absolutely positioned objects appearing over ListBox and DropDownL.ists. There is a special hack that uses an IFrame
and filter style sheet to make it appear like it’s over these controls. This property enables that hack on IE versions 5.5-6.
(IE 5 doesn't support the hack; IE 7 doesn't require the hack.)

The hack is imperfect. It breaks when another IFrame is in the same area of the page. By "breaks", this means the popup
usually looks incorrect including being transparent.

If the problem is affecting the PopupView, set the UseShadowEffect property to false.

Turn off the hack to work around this problem. Set this property to false. But you should only do this when the popup
does not overlap any listboxes or dropdownlists. If there is overlap, you have to make a design decision to change your
positioning or avoid using the IFrame.

When true, the hack is used when the browser is Internet Explorer for Windows versions 5.5 through 6..
When False, the hack not used. Choose this when the hack causes visual problems such as a transparent popup.

It defaults to true.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 177 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Enhanced ToolTips

The browser provides the ToolTip to describe almost any field as the mouse passes over it. That tooltip is very limited. For
most browsers, it cannot be multiline. It has one style (yellow). It cannot support HTML.

Note: The terms “Hint” and “ToolTip”” both describe ways to provide documentation to the user. A Hint displays the
message when focus enters the field and is best for data entry controls. A ToolTip displays the message when the mouse
points to the control. It can be used on almost any type of control.

Click on any of these topics to jump to them:

¢ Features

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 178 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Features

e Can be attached to almost any control. DES controls automatically use them when the feature is activated. Non-DES
controls get them through the NativeControlExtender or programmatically.

e Appears as the mouse passes over a control. Is removed as the mouse leaves (after a short delay). One difference from
the browser’s tooltip is that the user can move the mouse onto the tooltip and it will remain visible even though the
mouse is outside the control. This lets the text be visible without the mouse hiding a part of the control.

e The PopupView element containing the tooltip text will does not overlap the control (except in extreme circumstances).
It positions itself to one side. If there isn’t enough screen space for your preferred side, it chooses another side.

e Uses the PopupView feature from Interactive Hints which means:

Style-sheet driven, allowing color and other appearance changes

The text of the tooltip supports HTML formatting

It’s easy to add an image to the left of the message with the PopupView.BodylmageUrl property
Supports Callouts.

Draggable

Optional title bar

Optional close box

O 0O O 0o o o o o

The same PopupView definitions can be used for both Interactive Hints and ToolTips

e With a single property setting, all DES controls and controls using the NativeControlExtender can be switched to using

in the Global Settings Editor with the DefaultEnableTool TipsUsePopupViews property.

e When using Interactive Hints, that feature optionally sets up the hint as a tooltip. If the Popup ToolTip feature is enabled,
that hint uses the same PopupView definition as the hint (in HintFormatter.PopupViewName).

o |If the browser does not support the scripts needed for the Popup ToolTip feature or javascript is disabled, it scales down
gracefully to using the standard browser tooltip.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 179 of 309

http://www.peterblum.com/des/support.aspx�
http://www.peterblum.com/DES/DemoToolTips.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Using Enhanced ToolTips

The Popup ToolTip feature gets the text for a tooltip from either a control’s ToolTip property or its Hint property (if the
Interactive Hints feature is in use an the HintFormatter for that control has InToolTip set to true).

The setup is easy:

e Assign text for your tooltip messages

e Activate the Enhanced ToolTips feature

e Determine the desired appearance for ToolTips
Here are the details:

These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View

ﬁ command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. DES controls are “Enhanced ToolTips Ready”. Add the NativeControlExtender control to any non-DES control that
needs a Popup ToolTip. See the General Features Guide for the NativeControlExtender control.
Alternatively, use the HintManager .AddTool TipPopupViewToControl () method. See below.

2. Assign the text for your tooltip messages. There are three possible cases:

e When using Interactive Hints, use the text from the control’s Hint property. Be sure the control’s
HintFormatter.InToolTip property is true.

e Assign the text to the ToolTip property of the control.

o If the control does not have a ToolTip property (such as an HtmlControl like), use
the ToolTip property on the NativeControlExtender.

3. Activate the Enhanced ToolTips feature either for the page or globally.

e For the page, set HintManager. EnableTool TipsUsePopupViews to TrueFalseDefault. True on either

o Globally, set the DefaultEnableTool TipsUsePopupViews property to true in the “HintManager Defaults” section
of the Global Settings Editor.

4. There are several sources that determine which PopupView is used for your ToolTip.

e The Interactive Hints feature determines the PopupView definition for

o= A
any control using PopupViews as Hints. =
E HintManager Defaulis
e Many DES controls provide the ToolTipUsesPopupViewName DefaultHintPopup\ievBodylmagelr
: - I DefaultHintPopupViewhame Lt Yellow-Small
property to assign the PopupView definition name. DefoulttintsShou Errers Ht

DefaultHints ShowErrorsCssClass

e There is a global default. Specify a PopupView definition name in the DefoultbintShowErrorsCasClose?

DefaultTool TipPopupViewName property in the “HintManager DefaultHintsShowErrorsSeparator | Anbsp:
Defaults” section of the Global Settings Editor. See “Defining DefaultHintsShow TextCounterSeparato

PopupViews"' DefaultTool TipsAsHints True
"""""""" B ToolTips Replaced by PopupViews
It is used by controls that do not have the DefaultEnableTool Tips UsePopupiews Falss
Tool TipUsesPopupViewName property and those whose Tttt Toote-smal
ToolTipUsesPopupViewName property is set to the “{DEFAULT}” ToolTipHideOnClick False
token. ToolTipHideOnTyping False
ToolTipShowDelay 500
DefaultT ool TipPopupViewName

The default Popup\iew when tooltips are replaced by Popup
(HintManager. EnableTool TipslUsePopupWiews is true). Ho

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 180 of 309

http://www.peterblum.com/des/support.aspx�
http://www.peterblum.com/DES/DemoToolTips.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

HintManager.AddToolTipPopupViewToControl() method

Use with any non-DES control to convert its standard tooltip to a PopupView. It is an alternative to using the
NativeControlExtender control. If this function is called while HintManager.EnableToolTipsUsePopupViews is false,
nothing happens.

This method is overloaded.
[C#]

void AddToolTipPopupViewToControl (Control pControlWithToolTip,
string pPopupViewName)

void AddToolTipPopupViewToControl(Control pControlWithToolTip,
PeterBlum.DES.Web.WebControls.HintPopupView pPopupView)

[VB]

Sub AddToolTipPopupViewToControl (ByVal pControlWithToolTip As Control,
ByVal pPopupViewName As String)

Sub AddToolTipPopupViewToControl(ByVal pControlWithToolTip As Control,
ByVal pPopupView As PeterBlum.DES._Web._WebControls.HintPopupView)

Parameters
pControlWithToolTip

The control whose tooltip will be replaced. If this control is Visible=Fal se or its ToolTip property is unassigned,
nothing happens.

pPopupViewName

The name of a Hint PopupView defined globally and will be the PopupView for the tooltip. If ", it uses the global
property DefaultTool TipPopupViewName which is set in the “HintManager Defaults” topic of the Global
Settings Editor.

pPopupView
A PeterBlum.DES._Web_WebControls_HintPopupView object that defines the PopupView. See

will be used more efficiently so all that have this name will use a common definition.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 181 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

TextCounter Control

The TextCounter control displays the number of characters or words within a textbox. It
: S .) Peter Blum|

assists users when there are limits to the size of text they can enter. It compliments, but does

not replace the TextLengthValidator/WordCountValidator, because it does not impose a limit. 10 characters

It merely communicates the count and if a limit is exceeded.

The user interface of the TextCounter can be like an interactive label control. It also can present itself in the Hint feature of
DES TextBoxes.

Click on any of these topics to jump to them:

¢ Features

¢ Using the TextCounter Control

Features
e Evaluates the size of the text as compared to a maximum and possibly a minimum.

Evaluates either the number of characters or the number of words

Its text and optionally style sheet changes as the text size changes:
0 Below the minimum
0 Between the minimum and the next milestone
0 At or above a milestone prior to the maximum, such as 20 characters left
o

At or above a second milestone prior to the maximum, such as 10 characters left, to allow further emphasis that
the user is reaching the maximum

o0 Above the maximum

e The text shown supports tokens that can be replaced by the current count, minimum, maximum, and how much it
exceeds the maximum.

focus is on the textbox.

e It can change the style sheet of the textbox as the length crosses the maximum. It uses the same style sheet feature as
validators do for their “Change Style on Control with Error” feature. It will also hide the TextLengthValidator error
message if the length is below the maximum.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 182 of 309

http://www.peterblum.com/des/support.aspx�
http://learningdes.peterblum.com/InteractivePages/Menu.aspx?Topic=TextCounter�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Using the TextCounter Control

Click on any of these topics to jump to them:

Connecting To a TextBox
Attach the TextCounter control to a textbox by specifying the textbox’s ID in the TextBoxControllD property.

Determine where you want the TextCounter to display its information with the DisplayMode property. It can act like a Label
control, where it displays the current count text in the location of the TextCounter control. It can also integrate itself with the

PopupView. In both cases, the text is not shown unless the textbox has focus.

When DisplayMode uses the Interactive Hint feature, use the HintManager.HintShowTextCounterSeparator property to
describe the HTML that separates the hint text from the textcounter message. It defaults to “
". If you want the
textcounter message to appear first, use the token “{~}" as the first element of the
HintManager.HintShowTextCounterSeparator property. The HintManager is available on the PageManager control and
on the PeterBlum.DES.Globals.WebFormDirector object.

Determine if it counts characters or words with the CountType property. When counting words, a word is considered any
sequence of letters, digits, underscores, and single quotes (handles contractions and possessive nouns). Everything else is
considered whitespace.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 183 of 309

http://www.peterblum.com/des/support.aspx�
http://learningdes.peterblum.com/InteractivePages/Menu.aspx?Topic=TextCounter�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Establishing the Limits

While you can establish a minimum and maximum within the TextCounter’s Minimum and Maximum properties, the
TextCounter can get these values for you by looking in two places:

e If you have a TextLengthValidator or WordCountValidator attached to the textbox (and you should!), the validator
supplies the limits.

e The MaxLength property on the TextBox control.

You can also establish two milestones before reaching the Maximum in Milestonel and Milestone2. When reached, the
message and/or the style sheet class can switch. This allows a visual escalation as the user nears the Maximum. Milestones
are the number of characters before the end. Milestone2 defaults to 10, so it will change the message and/or style sheet from
10 characters before the maximum until the maximum is reached. Milestonel is not setup by default.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 184 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Setting the Text and Style Sheets

This control’s job is to communicate to the user that they are in a textbox that has a size limit, and how their entry is affected
by that limit. To do this job, it can change the text and style sheet as the user gets close to the maximum. There are 6 cases:

No maximum defined. This eliminates most of the remaining cases.
Below the minimum. Only used when there is a minimum defined.
Between the minimum and Milestonel

Milestonel: At or above a milestone prior to the maximum, such as 20 characters left. Milestonel is defined in the
Milestonel property as the number of characters or words BEFORE the maximum.

For example, if the maximum is 100 and you want to change the message or style sheet at 60 characters, set
Milestonel to 40 (100 - 60).

Milestone2: At or above a second milestone prior to the maximum, such as 10 characters left, to allow further
emphasis that the user is reaching the maximum. Milestone? is defined in the Milestone2 property as the number of
characters or words BEFORE the maximum.

For example, if the maximum is 100 and you want to change the message or style sheet at 90 characters, set
Milestonel to 10 (100 — 90).

Above the maximum

Each has its own text, style sheet class, and second style sheet class to differentiate the count (a token) from the rest of the
text. The style sheet classes are in DES\Appearance\lnteractive Pages\TextCounter.css. Here is where to edit the
text and style sheet classes for each case:

Case Property for the Text Style Sheet Class ‘ Tokens Style Sheet Class

No maximum defined NoMaximumMessage DES_TCCNormal DES_TCCNormalToken

Below the minimum BelowMinimumMessage DES_TCCBelowMinimum DES_TCCBelowMinimumToken
Between the minimum | NormalMessage DES_TCCNormal DES_TCCNormalToken

and Milestonel

Between Milestonel MilestonelMessage DES_TCCMilestonel DES_TCCMilestonelToken

and Milestone2

Between Milestone?2 Milestone2Message DES_TCCMilestone2 DES_TCCMilestone2Token

and the maximum

Above the maximum AboveMaximumMessage DES_TCCAboveMaximum DES_TCCAboveMaximumToken

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 185 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Tokens in Messages
Each of these messages can display live data by using tokens. Here are the tokens:

Number of characters or words in the textbox. It is updated as the user types.
Example
You have entered {COUNT}

Helps build sentences where singular and plural forms are needed when you use the {COUNT?} token. For example, “There is
1 item.” and “There are 2 items.”

You replace the term “singular” with the singular form of the word. You replace the term “plural” with the plural form of the
word.

It is updated as the user types.

Examples

You entered {COUNT} {COUNT:character:characters}.
You entered {COUNT} character{COUNT::s}

How close the count is to the maximum or minimum. Once the count reaches the minimum, it evaluates the count to the
maximum. It is updated as the user types.

Example
You are over the maximum by {NEARNESS}

Helps build sentences where singular and plural forms are needed when you use the {NEARNESS} token.

You replace the term “singular” with the singular form of the word. You replace the term “plural” with the plural form of the
word.

It is updated as the user types.

Examples

You are over the maximum by {NEARNESS:character:characters}
You are over the maximum by {NEARNESS} character{NEARNESS::s}

The value of the Minimum property.
Example
You are below the minimum of {MINIMUM}

The value of the Maximum property.
Example
You are above the mximum of {MAXIMUM}

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 186 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Adding a TextCounter Control

e O

1.

These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

Prepare the page for DES controls. See “Preparing a page for DES controls” in the General Features Guide. It covers
issues like style sheets, AJAX, and localization.

Add a TextBox control to the page. See the TextBoxes User’s Guide for details. Add the TextLengthValidator or
WordCountValidator to the textbox (only available when using the DES Validation Framework.)

Add a TextCounter control to the page.

Add the control (inside the <form> area):
<des:TextCounter id="[YourControllD]" runat="'server" />

e Identify the control which you will add the TextCounter control to its Controls collection. Like all ASP.NET
controls, the TextCounter can be added to any control that supports child controls, like Panel, User Control, or
TableCell. If you want to add it directly to the Page, first add a PlaceHolder at the desired location and use the
PlaceHolder.

e Create an instance of the TextCounter control class. The constructor takes no parameters.

e Assign the ID property.

e Add the TextCounter control to the Controls collection.

In this example, the TextCounter is created with an 1D of “TextCounter1”. It is added to PlaceHolder1.
[C#]

PeterBlum.DES.Web_WebControls.TextCounter vTextCounter =
new PeterBlum.DES.Web.WebControls.TextCounter();

vTextCounter.ID = "TextCounterl";

PlaceHolderl.Controls.Add(vTextCounter);

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add a using clause to that namespace on your
form.

[VB]

Dim vTextCounter As PeterBlum.DES.Web.WebControls.TextCounter = _
New PeterBlum._.DES_Web.WebControls.TextCounter()

vTextCounter.ID = "TextCounterl"

PlaceHolderl.Controls.Add(vTextCounter)

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add an Imports clause to that namespace on
your form.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 187 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

8.
9.

Guidelines for setting properties

Design mode users can use the Properties Editor or the Expanded Properties Editor. (See “Expanded Properties
Editor” in the General Features Guide.) The SmartTag ™ also offers some of the most important properties.

Text entry users should add the properties into the <des: ControlClass> tag in this format:
propertyname="value"

When setting a property programmatically, have a reference to the control’s object and set the property according to
your language’s rules.

Assign the TextBox control to the TextBoxControlID property.

If counting words, set CountType to Words.

Establish the limits, either in the textbox’s MaxLength property, the TextLengthValidator or WordCountValidator’s
Minimum and Maximum properties, or the TextCounter’s Minimum and Maximum properties.

If you want to use Milestonel and Milestone2, assign them. Remember that they are the number of characters or words
before the maximum is reached. Note: Milestone2 defaults to 10. To turn it off, set it to 0.

10. Here are some other considerations:

If you are using an AJAX system to update this control, set the INAJAXUpdate property to true. Also make sure
the PageManager control or AJAXManager object has been setup for AJAX. See “Using these Controls With
AJAX” in the General Features Guide. Failure to follow these directions can result in incorrect behavior and
javascript errors.

This control does not preserve most of its properties in the ViewState, to limit its impact on the page. If you need to
use the ViewState to retain the value of a property, see “The ViewState and Preserving Properties for PostBack” in
the General Features Guide.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 188 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Properties of the TextCounter Control

¢

¢
¢
¢

TextBox Properties
The Properties Editor shows these properties in the TextBox category.

TextBoxControllD (string) — The ID to the TextBox control whose text will be evaluated. Supports the
System._Web.Ul _.WebControls.TextBox and its subclasses, including DES’s textboxes. It also supports controls
registered in the <ThirdPartyControls> section of the custom.des.config file whose sameas= attribute is
textbox.

When the TextBox control is not in the same naming container, assign the control reference programmatically to the
TextBoxControl property (below).

TextBoxControl (Control) — A reference to the TextBox control attached to this TextCounter control. It is an alternative
to TextBoxControllD that allows the control to be anywhere on the page instead of the same naming container as the
TextCounter control. You must assign it programmatically.

When assigned, it overrides the value of TextBoxControllD.

Minimum (int) — The minimum number of characters or words required. The page should not be saved when the text is
below this limit.

When below this number, the TextLengthValidator or WordCountValidator will report an error (based on its own
Minimum property).

When below, the control displays the text from the BelowMinimumMessage property and uses the style sheet class
defined in BelowMinimumCssClass.

When reached, the control changes the text to NormalMessage.

When 0, it first looks for a Minimum property on TextLengthValidator or WordCountValidator assigned to the textbox.
If not found, no minimum is used.

It defaults to 0.

Maximum (int) — The maximum number of characters or words permitted. The page should not be saved when the text
is above this limit. This is a boundary but it doesn't stop the typing. It switches the text displayed.

When above this number, the TextLengthValidator or WordCountValidator reports an error. When reached, the control
changes the text it displays to the AboveMaximumMessage and uses the style sheet class defined in
AboveMaximumCssClass.

When 0, it first looks for a Maximum property on TextLengthValidator or WordCountValidator assigned to the textbox.
If not found, it looks at the MaxLength property on the TextBox (even if the textbox is MultiLine).

If both sources also are 0, then no maximum is used. The text displayed will come from NoMaximumMessage instead
of NormalMessage.

It defaults to 0.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 189 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Milestonel (int) — The number of characters or words before Maximum when Milestonel is used. When Maximum
minus Milestonel is reached, MilestonelMessage is displayed and the style sheet class in MilestonelCssClass is
applied. For example, when Maximum is 100 and you want the Milestonel to occur at the 80" character, use 20 (100 —
80) in Milestonel.

There are two milestones prior to Maximum. When each is hit, its own is displayed, replacing the current message and
style sheet class. This provides a way to escalate the message as the text count nears the limit.

When 0, milestonel is not used.
It defaults to 0.

Milestone2 (int) — The number of characters or words before Maximum when Milestone2 is used. When Maximum
minus Milestone2 is reached, Milestone2Message is displayed and the style sheet class in Milestone2CssClass is
applied. For example, when Maximum is 100 and you want the Milestone2 to occur at the 90" character, use 10 (100 —
90) in Milestone2.

There are two milestones prior to Maximum. When each is hit, its own is displayed, replacing the current message and
style sheet class. This provides a way to escalate the message as the text count nears the limit.

When 0, milestone2 is not used.
It defaults to 10.
CountType (enum PeterBlum.DES.CountType) - Determines if it counts by characters or words.
The enumerated type PeterBlum._DES.CountType has these values:
o Characters
o Words
It defaults to CountType.Characters.

Note: Messages have terms like “character”” and “word” embedded. As you switch this property from Characters to
Words, it automatically switches ““character” to “word™. It does the reverse when you switch from Words to Characters.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 190 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Message Properties
The Properties Editor shows these properties in the Messages category.

NoLimitMessage (string) - The message when there is no maximum. If a maximum is used, NormalMessage and
several others below are used.

Note: By having NoLimitMessage and NormalMessage properties defined, the TextCounter can have default text for
two cases without forcing you to edit a property.

The style sheet class used for this message is assigned to CssClass, which defaults to “DES_TCCNormal” in the
DES\Appearance\interactive Pages\TextCounter.css file.

If ", it will still show the count.
It defaults to “{COUNT} {COUNT:character:characters)”.

NoLimitMessageLookupID (string) — Gets the value for NoLimitMessage through the String Lookup System. (See
“String Lookup System” in the General Features Guide.) The LookuplD and its value should be defined within the
String Group of TextCounter. If no match is found OR this is blank, NoLimitMessage will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookuplD and associated textual value in your data source (resource, database, etc). Assign the same
LookuplD to this property.

It defaults to "".

NormalMessage (string) - The message when the count is between the Minimum and Maximum. If any milestones are
used, it must be less than the milestone. If there is no maximum, NoLimitMessage is used instead.

Note: By having NoLimitMessage and NormalMessage properties defined, the TextCounter can have default text for
two cases without forcing you to edit a property.

The style sheet class used for this message is assigned to CssClass, which defaults to “DES_TCCNormal” in the
DES\Appearancel\interactive Pages\TextCounter.css file.

If ", it will still show the count.
It defaults to “{COUNT} of {MAXIMUM} characters”.

NormalMessagelL ookuplID (string) — Gets the value for NormalMessage through the String Lookup System. (See
“String Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the
String Group of TextCounter. If no match is found OR this is blank, NormalMessage will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookuplD and associated textual value in your data source (resource, database, etc). Assign the same
LookuplD to this property.

It defaults to """,
MilestonelMessage (string) - The message when the count reaches Milestonel.

The style sheet class used for this message is assigned to MilestonelCssClass, which defaults to
“DES_TCCMilestonel” in the DES\Appearance\interactive Pages\TextCounter.css file.

If ", it uses the text from NormalMessage.

It defaults to “{COUNT} {COUNT:character:characters} - {NEARNESS} {NEARNESS:character
remains:characters remain}”.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 191 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

MilestonelMessageLookuplD (string) — Gets the value for MilestonelMessage through the String Lookup System.
(See “String Lookup System” in the General Features Guide.) The LookuplD and its value should be defined within
the String Group of TextCounter. If no match is found OR this is blank, MilestonelMessage will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookuplD and associated textual value in your data source (resource, database, etc). Assign the same
LookuplID to this property.

It defaults to """,
Milestone2Message (string) - The message when the count reaches Milestone2.

The style sheet class used for this message is assigned to Milestone2CssClass, which defaults to
“DES_TCCMi lestone?2” in the DES\Appearance\interactive Pages\TextCounter.css file.

If ", it uses the text from MilestonelMessage or if that is blank, NormalMessage.

It defaults to “{COUNT} {COUNT:character:characters} - {NEARNESS} {NEARNESS:character
remains:characters remain}”.

Milestone2MessageLookupID (string) — Gets the value for Milestone2Message through the String Lookup System.
(See “String Lookup System” in the General Features Guide.) The LookuplD and its value should be defined within
the String Group of TextCounter. If no match is found OR this is blank, Milestone2Message will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookuplD and associated textual value in your data source (resource, database, etc). Assign the same
LookuplID to this property.

It defaults to """
AboveMaximumMessage (string) - The message when the count exceeds Maximum.

The style sheet class used for this message is assigned to AboveMaximumCssClass, which defaults to
“DES_TCCAboveMax” in the DES\Appearancel\interactive Pages\TextCounter.css file.

If ", it uses the text from NormalMessage.

It defaults to “{COUNT} {COUNT:character:characters} — Exceeded by {NEARNESS}
{NEARNESS:character:characters}”.

AboveMaximumMessageLookuplID (string) — Gets the value for AboveMaximumMessage through the String Lookup
System. (See “String Lookup System” in the General Features Guide.) The LookupID and its value should be
defined within the String Group of TextCounter. If no match is found OR this is blank, AboveMaximumMessage will
be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookuplD and associated textual value in your data source (resource, database, etc). Assign the same
LookuplD to this property.

It defaults to """

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 192 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

BelowMinimumMessage (string) - The message when the count is below Minimum.

The style sheet class used for this message is assigned to BelowMinimumCssClass, which defaults to
“DES_TCCBelowMin” in the DES\Appearancel\interactive Pages\TextCounter.css file.

If ", it uses the text from NormalMessage.
It defaults to “{COUNT} {COUNT:character:characters} — Requires at least {MINIMUM}".

BelowMinimumMessageLookupID (string) — Gets the value for BelowMinimumMessage through the String Lookup
System. (See “String Lookup System” in the General Features Guide.) The LookuplD and its value should be
defined within the String Group of TextCounter. If no match is found OR this is blank, BelowMinimumMessage will be
used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookuplD and associated textual value in your data source (resource, database, etc). Assign the same
LookuplD to this property.

It defaults to """

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 193 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Appearance Properties
The Properties Editor shows these properties in the Appearance category.

DisplayMode (enum PeterBlum.DES.Web.WebControls.TextCounterDisplayMode) — Determines where the messages
are shown. They can appear within this control and in the textbox's Hint feature.

The enumerated type PeterBlum.DES_Web_WebControls.TextCounterDisplayMode has these values:
0 Here - Use the location of the TextCounter.

0 Hint - Use the textbox's Hint feature if it is set up. It will append its message to the Hint text. Because it
appends, you may want some separator between the Hint and the textcounter’s message.

0 Both - Use hoth the TextCounter and Hint feature.
The default value is TextCounterDisplayMode . Here.

When DisplayMode is Hint or Both, use the HintManager.HintShowTextCounterSeparator to define the HTML
that separates the hint text from the TextCounter message. It defaults to “
". If you want the TextCounter
message to appear first, use the token “{~}" as the first element of the
HintManager.HintShowTextCounterSeparator property. The HintManager is available on the PageManager control
and on the PeterBlum.DES.Globals.WebFormDirector object.

CssClass (string) — The Cascading Style Sheet applied when text count is between the Minimum and Maximum, and
has not reached any milestones.

The style applies to the entire message. If you want the {COUNT?} and {NEARNESS} tokens to be a different style, use
the NormalTokenCssClass property, which defaults to “DES_TCCNormalToken”.

It defaults to “DES_TCCNormal™.

This style is declared in DES\Appearance\lnteractive Pages\TextCounter.css.

.DES_TCCNormal

{
+

NormalTokenCssClass (string) — The Cascading Style Sheet applied to the {COUNT} and {NEARNESS} tokens when
text count is between the Minimum and Maximum, and has not reached any milestones.

To apply a style to the overall control, use the CssClass property.
It defaults to “DES_TCCNormal Token”.
This style is declared in DES\Appearance\lnteractive Pages\TextCounter.css.

.DES_TCCNormalToken

{
}

MilestonelCssClass (string) — The Cascading Style Sheet applied when text count has reached Milestonel.

The style applies to the entire message. If you want the {COUNT} and {NEARNESS} tokens to be a different style, use
the MilestonelTokenCssClass property, which defaults to “DES_TCCMi lestonelToken”.

It defaults to “DES_TCCMi lestonel”.

This style is declared in DES\Appearance\interactive Pages\TextCounter.css.

.DES_TCCMilestonel

{
}

MilestonelTokenCssClass (string) — The Cascading Style Sheet applied to the {COUNT} and {NEARNESS} tokens
when text count has reached Milestonel.

To apply a style to the overall control, use the MilestonelCssClass property.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 194 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

It defaults to “DES_TCCMi lestonelToken”.
This style is declared in DES\Appearance\lnteractive Pages\TextCounter.css.

.DES_TCCMi lestonelToken

{
}

e Milestone2CssClass (string) — The Cascading Style Sheet applied when text count has reached Milestone2.

The style applies to the entire message. If you want the {COUNT?} and {NEARNESS} tokens to be a different style, use
the Milestone2TokenCssClass property, which defaults to “DES_TCCMi lestone2Token”.

It defaults to “DES_TCCMi lestone?2”.

This style is declared in DES\Appearance\interactive Pages\TextCounter.css.

-DES_TCCMi lestone?2

{
}

o Milestone2TokenCssClass (string) — The Cascading Style Sheet applied to the {COUNT} and {NEARNESS} tokens
when text count has reached Milestone2.

To apply a style to the overall control, use the Milestone2CssClass property.

It defaults to “DES_TCCMi lestone2Token”.

This style is declared in DES\Appearance\interactive Pages\TextCounter.css.
iDES_TCCMi lestone2Token

}

e AboveMaximumCssClass (string) — The Cascading Style Sheet applied when text count has exceeded the Maximum.

color: Red;

The style applies to the entire message. If you want the {COUNT?} and {NEARNESS} tokens to be a different style, use
the AboveMaximumTokenCssClass property, which defaults to “DES_TCCAboveMaxToken”.

It defaults to “DES_TCCAboveMax™.

This style is declared in DES\Appearance\lnteractive Pages\TextCounter.css.
.DES_TCCAboveMax
{

}

e AboveMaximumTokenCssClass (string) — The Cascading Style Sheet applied to the {COUNT?} and {NEARNESS}
tokens when text count has exceeded Maximum.

color: Red;

To apply a style to the overall control, use the AboveMaximumCssClass property.

It defaults to “DES_TCCAboveMaxToken”.

This style is declared in DES\Appearance\lnteractive Pages\TextCounter.css.
-.DES_TCCAboveMaxToken
{
}

e BelowMinimumCssClass (string) — The Cascading Style Sheet applied when text count is below the Minimum.

The style applies to the entire message. If you want the {COUNT?} and {NEARNESS} tokens to be a different style, use
the BelowMinimumTokenCssClass property, which defaults to “DES_TCCBelowMinToken”.

It defaults to “DES_TCCBelowMin”.

color: Red;

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 195 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

This style is declared in DES\Appearance\interactive Pages\TextCounter.css.

-DES_TCCBelowMin
{

}

o BelowMinimumTokenCssClass (string) — The Cascading Style Sheet applied to the {COUNT} and {NEARNESS}
tokens when text count is below the Minimum.

color: Red;

To apply a style to the overall control, use the BelowMinimumCssClass property.

It defaults to “DES_TCCBe lowMinToken”.

This style is declared in DES\Appearance\lnteractive Pages\TextCounter.css.
tDES_TCCBeIowMinToken

}
e BackColor, BorderColor, BorderStyle, BorderWidth, Columns, Font, ForeColor, Height, and Style — These

color: Red;

Recommendation: Use style sheets class with the CssClass property. If any of these properties are applied, they will
override the corresponding attribute in any style sheet class used on this control.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 196 of 309

http://www.peterblum.com/des/support.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.webcontrol.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Behavior Properties
The Properties Editor shows these properties in the Behavior category.

InNAJAXUpdate (Boolean) — When using AJAX on this page, set this to true if the control is involved in an AJAX
update. See “Using These Controls with AJAX” in the General Features Guide. It defaults to false.

Visible (Boolean) — When Fal se, this control is not used. It defaults to true.

ViewStateMgr (PeterBlum.DES.Web.WebControls.ViewStateMgr) — Enhances the ViewState on this control to provide
more optimal storage and other benefits. Normally, the properties of this control and its segments are not preserved in the
ViewsState. When working in ASP.NET markup, define a pipe delimited string of properties in the PropertiesToTrack
property. When working in code, call ViewStateMgr.TrackProperty(*'propertyname') to save the
property. Individual segments have a similar method: TrackPropertylnViewState(*'propertyname’™).

For more details, see “The ViewState and Preserving Properties for PostBack” in the General Features User’s
Guide.

PropertiesToTrack (string) — A pipe delimited list of properties to track. Designed for use in markup and the properties
editor. The ViewState is not automatically used by most of these properties. To include a property, add it to this pipe
delimited list.

For example, "Group|MayMoveOnClick".
When working programmatically, use ViewStateMgr.TrackProperty(“"PropertyName™).

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 197 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Context Menu and DropDownMenu Controls

The Context Menu control provides a client-side popup menu that looks like the browser’s right-click context menus. It is
designed to show a list of commands and optionally their keystroke equivalents. When the mouse passes over a command,
the row is highlighted, the way context menus do. When the mouse is clicked on a row, the popup closes and associated
JavaScript code is executed. You supply the JavaScript code for each command.

The DropDownMenu control is a button with built-in ContextMenu, providing an easy way to launch a context menu at a
specific location on the page.

Click on any of these topics to jump to them:

¢ Features

¢ Using the Context Menu

® OQverall Appearance
® Menu Commands: PeterBlum.DES.Web.WebControls.CommandMenultem class

® Menu Separators: PeterBlum.DES.Weh.WehControls.SeparatorMenultem class

® Hint Rows: PeterBlum.DES.Web.WebControls.HintMenultem class

® Popup Controls: PeterBlum.DES.Web.WebControls.MenuActivator class

The Context Menu control offers an interesting extension, where you can put non-command information in for hints. The
entire menu can consist of hints and work as popup help, or it can be mixed with commands. The hint area can have a
different background and font.

This control can popup in several ways:

e You select a list of one or more elements on the page that respond to the mouse click to popup. This allows you to have
numerous surfaces, perhaps a group of related fields, all which offer the same commands.

e The browser page can be a popup. This would provide a menu for the entire page.

e You select whether the left, right or either button pops up. The left button causes the context menu to drop down from
the associated element clicked. The right button causes the context menu to drop down from the current mouse point.
The document.body always pops up from the current mouse point.

It pops down by clicking on any row except those with a separator bar and clicking outside the menu frame.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 198 of 309

http://www.peterblum.com/des/support.aspx�
http://learningdes.peterblum.com/InteractivePages/Menu.aspx?Topic=Menu�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Features

Internet Explorer for Windows, FireFox, Netscape 7+, Safari and Chrome do. Opera does not. If you want a menu to popup
from a button or label, use the DropDownMenu. It works with Opera.

By default, it takes on the appearance of a standard context menu. (The default style sheets are designed to look much
like the Context menu of Windows XP under IE 6.)

Each “command” row can show a label and keyboard equivalent.
The keyboard equivalent will actually operate the menu without requiring a popup.

The command is any JavaScript you want to write. It also provides some built in scripts to show a confirmation message
and post back, much like a DES button can.

It can popup either with a left or right click. Right click is the tradition for a context menu. Left click is excellent for
putting a Help button on the page which opens the menu. The left button causes the context menu to drop down from the
associated element clicked. The right button causes the context menu to drop down from the current mouse point.

It can be attached to a single control, a list of controls, or the window. When attached to the window, it overrides the
standard browser’s context menu.

In addition to commands, you can add hints, which are rows of text (or HTML). They don’t fire commands.
You can also insert menu separators.
If you establish a maximum height and the menu items exceed that height, it installs a scrollbar to access all commands.

When you have a license for this module, many controls in the Peter’s Date and Time module will offer a context menu
with their own commands.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 199 of 309

http://www.peterblum.com/des/support.aspx�
http://www.quirksmode.org/js/events_compinfo.html�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Using the Context Menu

® Properties for PeterBlum.DES.Web.WebControls.CommandMenultem

Here is a sample Context Menu.

Menu Command Row | —{ Taday T
c Image where the user
Calendar clicks to, popup
Menu Separator Row [—{ (For example)
Prewvious Day g
Mext Day Dawvn

Command Label | ———p-Previous Month Pageup «—— | Command Keystroke
Mext Morth Pagedown
Hint Row ———V{ Date format iz mmiddbseyey

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 200 of 309

http://www.peterblum.com/des/support.aspx�
http://learningdes.peterblum.com/InteractivePages/Menu.aspx?Topic=Menu�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Overall Appearance

The appearance is style sheet driven, using style sheet classes defined in \DES\Appearance\interactive

Pages\Menu.css. This topics discusses the classes for the overall appearance. See other topics for their respective style
sheet classes.

Here is the default overall appearance style sheet class. It uses padding attributes to establish the gaps around the menu as
traditionally seen in context menus.

-DESMenu

{
background-color: white;
color: black;
font-size: 8pt;
font-family: Arial;
line-height: normal;
border-right: #a9a9%a9 1px solid; /* dark grey */
border-top: #a9%9a9%a9 1lpx solid;
border-left: #a%a%9a9 1px solid;
border-bottom: #a%9a%9a9 1px solid;
padding-top: 2px;
padding-left: 2px;
padding-right: 2px;
padding-bottom: 2px;

}

While you can add the width here, you may have several menus throughout your web application requiring differing widths.
So set the width in the control’s Width property. It defaults to 200px.

The menu height is normally a function of the number of menu items you add. If you have a large number of items, set a

maximum height in the control’s Height property. It will establish a scrollbar to allow viewing the commands that exceed the
height.

On Internet Explorer, you can take advantage of two visual effects. For a shadow, set the UseShadowEffect property to
true. To fade in and out as it pops up and down, set the UsePopupEffect property to true.

The menu appears relative to either the control that was clicked or to the mouse, depending on whether the using a left button
click or right button click. The menu positions itself using the HorizPosition and VertPosition properties, which default to
RightSidesAl ign and PopupBe l ow, respectively

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 201 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Menu Commands: PeterBlum.DES.Web.WebControls.CommandMenultem class

The primary type of “Menultem” is a menu command, which provides a label, optional keystroke, and JavaScript to run
when the command is selected. The PeterBlum.DES_.Web_WebControls.CommandMenul tem class describes a
single menu command.

Set the label in the CommandLabel property of the CommandMenultem.

If you want to use a keystroke, set it in the CommandKey property. The keystroke will only work on HTML elements that
have focus. They can also override the browser’s menu command keystrokes so make judicious choices.

Each CommandMenultem must have its CommandID property assigned to a unique number. This number is used to let you

find it programmatically for modification or deletion. It is also used by the script you write to determine the command that
invoked the script.

Click on any of these topics to jump to them:

¢ Providing a Script for your Command

® OnClickScript Property

® ProcessCommandFunctionName property

® Validating, Showing A Confirmation Message, and Posting Back

® Order of the Actions

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 202 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Providing a Script for your Command

Menu commands run JavaScript. You determine the actions of the script. Often your script takes a client-side action like
changing the value of a textbox (for example, a Clear command could remove the text of the textbox using the context
menu). Sometimes you want it to post back to the server. You may want to validate or show a confirmation message too. The
CommandMenultem supports all of this with several properties.

There are two places to write script that takes a client-side action: OnClickScript property and
ProcessCommandFunctionName property.

The OnClickScript property of the CommandMenultem. Just add the desired script and it will be run.
For example, this CommandMenultem shows an alert:

<des:CommandMenultem CommandID="10" CommandLabel="Say hello, Ollie"
onClickScript="alert("Hello Ollie!");" />

It is effective when you encapsolate all data needed by your script into the code. You can embed the CommandID and data
specific to the control in the script, like this:

OnClickScript="MyCmdFunction(10, new Date(2008, 8, 1));"

However, there is a better way to call a function and supply it with data, by using the ProcessCommandFunctionName
property.

that opened the context menu. These values are very powerful as they let you have a single context menu shared by many
controls, while letting your scripts to know enough about each control to take specialized actions.

This example is a snippet from the DES DateTextBox’s context menu function. It assumes the first token is the id of the
DateTextBox so it knows how to update that control’s value. The ProcessCommandFunctionName property is assigned
“DES_DTBMenuCmd”. The script functions are documented in the Date and Time User’s Guide.

function DES_DTBMenuCmd(pCmdID, pArgs)

{
var vDTB = DES GetByld(pArgs.Tokenl);
switch (pCmdID)
{
case 10: // next day
DES_DTBAddDays(vDTB, -1);
break;
case 11: // previous day
DES_DTBAddDays(vDTB, 1);
break;
case 2: // today
DES DTBTodayCmd(vDTB);
break;
}
return true;
¥

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 203 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

To validate, set CausesValidation to true and ValidationGroup to the appropriate validation group name. These
properties are on the CommandMenultem class. This feature supports both the DES and Native Validation Frameworks.

To show a confirmation message, set the ConfirmMessage property to the text of your message on the CommandMenultem
class.

event to process the post back. That event is passed the CommandID value so you can determine which command was
invoked.

Alternatively, you can have the command point the browser to another URL by setting the NavigateUr| property on the
CommandMenultem class.

Order of the Actions

With so many ways to set up your scripts, it is important to know the order of the actions.

1. Validate when CausesValidation=true. If there is a validation error, stop.

2. Show the Confirm Message when ConfirmMessage is assigned. If the user clicks Cancel, stop.
3. Run the script in the OnClickScript property.
4

Run the script through the function assigned to the ProcessCommandFunctionName property. It your function returns
false, stop.

5. Either post back when PostBack is true or navigate to another page when NavigateUrl is assigned.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 204 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Appearance of Menu Command Rows
Style sheet classes determine the appearance and position of the label and command key. They also provide the hilite effect

when the mouse is over a menu command. The default classes are defined in \DES\Appearance\interactive
Pages\Menu.css.

Command Row

The overall row has a style sheet. It is generally used to establish row height and padding. By default, it uses the class
“DESMenuCommand” but you can change it in the CommandRowCssClass property on the ContextMenu control.

Here is the default style sheet:
-DESMenuCommand

height:20px;
padding-top:4px;

To provide a mouse over effect, the ContextMenu merges the DESMenuCommand class with the DESMenuMouseOver
class (or whatever is assigned to the MouseOverCssClass property on the ContextMenu control).

As a result, the DESMenuMouseOver class should only contain the changes that occur when the mouse is over, such as the
background color.

Here is the default style sheet:
-DESMenuMouseOver

{
background-color: #3366cc;

color: White;

The label has it’s own style sheet. It should always use the float and position styles to retain the correct positioning. By
default, it uses the class “DESMenulLabel” but you can change it in the CommandLabelCssClass property on the
ContextMenu control.

Here is the default style sheet:
-DESMenuLabel

{
text-align: left;
/* float and position here allow varying width labels to be complimented by
varying width keystrokes. ITf these two elements overlap, consider changing
the overall width of the ContextMenu control in its Width property. */
float: left;
position:relative;
left:16px;
}

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 205 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

The command key has it’s own style sheet. It should always use the float and position styles to retain the correct positioning.
By default, it uses the class “DESMenuKey” but you can change it in the CommandKeyCssClass property on the
ContextMenu control.

Here is the default style sheet:

-DESMenuKey
{
text-align: right;
/* float and position here allow varying width labels to be complimented by
varying width keystrokes. If these two elements overlap, consider changing
the overall width of the ContextMenu control in its Width property. */
float:right;
position:relative;
left:-16px;
}

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 206 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Adding a PeterBlum.DES.Web.WebControls.CommandMenultem to the ContextMenu

Add CommandMenultem objects to the ContextMenu’s Items property. It is a collection type. Items are shown in the order
they are added.

In the Properties Editor, click on the button to the right
of the Items property or in the SmartTag [, select
Define Menu ltems. Members: CmdID: 0 [CommandLabel unassigned] properties:

=
1] CmdID: 0 [CommandLabel unassigne|iie'y %‘_;; iél |

CommandMenultem Collection Editor @I&J

Click the Add button and select CommandMenultem. OnCckSorit =
Fill in the properties. * PostBack False
A PostBackTrackFocus False
Always assign CommandID and CommandLabel. ValidationGroup
4 Command
CommandID 0 E
CommandKey
CommandLabel
Cavarnandl shall aal
L) L1} 3 CommandLabel

] I The command label.

Add Remove

QK Cancel

CommandMenultem ‘ I

HintMenultem

(S SeparatorMenultermn

Define each CommandMenultem object as a child object of the Context Menu control. Always supply the CommandID and
CommandLabel properties

Here is a sample:

<des:ContextMenu id="ContextMenul' runat="'server™ [various properties]>
<des:CommandMenultem CommandID=""100" CommandLabel=""Show Cards"
onClickScript="ShowCards();"/>
<des:CommandMenultem CommandID="101" CommandLabel="Bid $10"
CommandKey="B" OnClickScript="Bid(10.00);" />
</des:ContextMenu>

To add a Command Row programmatically, calls the method AddCommand () on the ContextMenu control. There are 4
overloaded versions. Use the last two if you want to postback or navigate to a URL. Each returns a
PeterBlum.DES.Web.WebControls.CommandMenultem object that has already been added as the last element of
the Items property. You can further edit its properties as needed.

[C#]

public PeterBlum.DES.Web.WebControls.CommandMenultem AddCommand(short pCommandiD,
string pCommandLabel);

public PeterBlum.DES.Web.WebControls.CommandMenultem AddCommand(short pCommandiD,
string pCommandLabel,
string pCommandKey, string pOnClickScript,
bool pCausesValidation, string pValidationGroup,
string pConfirmMessage);

public PeterBlum.DES.Web.WebControls.CommandMenultem AddCommand(short pCommandiD,
string pCommandLabel,
string pCommandKey, string pOnClickScript,
bool pCausesValidation, string pValidationGroup,
string pConfirmMessage, bool pPostBack);

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 207 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

public PeterBlum.DES.Web.WebControls.CommandMenultem AddCommand(short pCommandlID,
string pCommandLabel,
string pCommandKey, string pOnClickScript,
bool pCausesValidation, string pValidationGroup,
string pConfirmMessage, string pNavigateUrl);

[VB]

Public Function AddCommand(ByVal pCommandID As System.Intl6, _
ByVal pCommandLabel As String) As PeterBlum.DES.Web.WebControls.CommandMenultem

Public Function AddCommand(ByVal pCommandID As System.Intl6, _
ByVal pCommandLabel As String, ByVal pCommandKey As String, _
ByVal pOnClickScript As String, _
ByVal pCausesValidation As Boolean, ByVal pValidationGroup As String, _
ByVal pConfirmMessage As String) As PeterBlum.DES.Web.WebControls.CommandMenultem

Public Function AddCommand(ByVal CommandID As System.Intl6, _
ByVal pCommandLabel As String, ByVal pCommandKey As String, _
ByVal pOnClickScript As String, _
ByVal pCausesValidation As Boolean, ByVal pValidationGroup As String, _
ByVal pConfirmMessage As String, _
ByVal pPostBack As Boolean) As PeterBlum.DES.Web.WebControls.CommandMenultem

Public Function AddCommand(ByVal CommandID As System.Intl6, _
ByVal pCommandLabel As String, ByVal pCommandKey As String, _
ByVal pOnClickScript As String, _
ByVal pCausesValidation As Boolean, ByVal pValidationGroup As String, _
Byval pConfirmMessage As String, _
ByVal pNavigateUrl As String) As PeterBlum.DES.Web.WebControls.CommandMenultem

Parameters

pCommandID

Assigned to CommandID. Always assign it a unique value.
pCommandLabel

Assigned to the CommandLabel property.
pCommandKey

Assigned to the CommandKey property. If not used, pass ™.
pONClickScript

Assigned to the OnClickScript property. If not used, pass "".
pCausesValidation

Assigned to the CausesValidation property. If not used, pass false.
pValidationGroup

Assigned to the ValidationGroup property. If not used, pass "*'. To validate all groups, pass "*".
pConfirmMessage

Assigned to the ConfirmMessage property. If not used, pass .
pPostBack

Assigned to the PostBack property. If not used, pass false.
pNavigateUrl

Assigned to the NavigateUrl property. If not used, pass """

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 208 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Return Value

Returns a PeterBlum.DES.Web.WebControls.CommandMenultem object with its properties assigned to the values
passed in. It has already been added to the Items property at as the last element. You can further edit the properties of the
PeterBlum.DES.Web.WebControls.CommandMenultem object as needed

In this example, the Page_Load () method will add the same two commands shown above in the ASP.NET example to the
Context Menu whose ID is CML1.

[C#]

protected void Page Load(object sender, System._EventArgs e)
{
ContextMenul.AddCommand (100, *'Show Cards'™);
ContextMenul.AddCommand(101, "Bid $10",

"B, "Bid(10.00);", // command key and OnClickScript
false, "', // validation
"Do you want to place a $10 bid?'"); // confirm message

}

[VB]

Protected Sub Page_Load(ByVal sender As Object, _
ByVal e As System.EventArgs)
ContextMenul .AddCommand (100, *'Show Cards')
ContextMenul.AddCommand(101, *"Bid $10",

"B, "Bid(10.00);", _ " command ke§_and OnClickScript
False, "', _ " validation
"Do you want to place a $10 bid?") " confirm message
End Sub
Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 209 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Properties for PeterBlum.DES.Web.WebControls.CommandMenultem

e CommandID (string) — This is an integer which allows you to uniquely identify a row. You must define a unique value
for it. It has several usages:

0 To find and modify it programmatically.

0 When using the context menu’s ProcessCommandFunctionName property, it tells your script which

needs to be enabled or disabled.

e CommandLabel (string) — The text to appear in the column for the command label. It is required — it cannot be blank.
Lengthy commands may overlap the keystroke forcing you to adjust the value of the context menu’s Width property.

e CommandLabellLookuplD (string) — Gets the value for CommandLabel through the String Lookup System. (See
“String Lookup System” in the General Features Guide.) The LookuplD and its value should be defined within the
String Group of ContextMenus. If no match is found OR this is blank, CommandLabel will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookuplD and associated textual value in your data source (resource, database, etc). Assign the same
LookuplD to this property.

It defaults to ""'.

e CommandKey (string) — The text to appear in the column for the keystroke. When this is a command, it will only show
one keystroke and make only the first character uppercase. So it will truncate at the first space. (If it gets “ENTER T D
PAGEUP”, it will strip off everything after “Enter”.) When this is a command, uses the exact text that you supply. The
string can include the Control key modifier by using the text “CTRL+" before the key. For example, “CTRL+T".

e Note: This field displays text representing a key. It does not actually care what the text is and certainly doesn’t cause the
keys that it contains to do anything when those keys are typed. The Context Menu doesn’t actually have any keyboard
features of its own.

e OnClickScript (string) — JavaScript code to execute when the command is selected. Only applies when this is a
command, not on a hint. It must be a complete JavaScript statement, ending in a semicolon. It should not start with
“JavaScript:” as the control adds this text for you.

Your script can signal DES to stop processing the remaining actions of the command with this line of code:

vStop = true;

e CausesValidation (Boolean) — When true, the command first attempts to validate all controls whose validation group
matches the ValidationGroup property. If it succeeds, the remaining actions will proceed.

Use the ValidationGroup property to specify the validation group name. It supports "“*" to identify all groups. DES and
native Validators are supported.

It defaults to False.

e ValidationGroup (string) — When CausesValidation is true, this is the validation group name that identifies the
validators to fire. It can be "*" to validate all on the page.

It defaults to """
e PostBack (Boolean) — When true, the last action taken will be to postback.

The postback will occur after attempting validation (when CausesValidation=true), running OnClickScript, and
running the Menu's ProcessCommandFunction.

know what action occurred.
Overrides NavigateUrl if that is also assigned.

It defaults to False.
Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 210 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

PostBackTracksFocus (Boolean) — When PostBack=true and this is true, it attempts to keep the focus on the last
control with focus prior to posting back.

It defaults to False.
NavigateUrl (string) — When assigned, direct the browser to this URL.

If PostBack=true, this property is not used. The redirect will occur after attempting validation (when
CausesValidation=true), running OnClickScript, and running the Menu's ProcessCommandFunction.

It defaults to """
ConfirmMessage (string) — When assigned, prompt the user to confirm with this message.

If the user clicks Cancel, the process is stopped. If CausesValidation = true, validation runs first. The confirm
message runs before running any scripts.

It defaults to """

ConfirmMessageLookupID (string) — Gets the value for ConfirmMessage through the String Lookup System. (See
“String Lookup System” in the General Features Guide.) The LookuplD and its value should be defined within the
String Group of ConfirmMessages. If no match is found OR this is blank, ConfirmMessage will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookuplD and associated textual value in your data source (resource, database, etc). Assign the same
LookuplD to this property.

It defaults to """

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 211 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Menu Separators: PeterBlum.DES.Web.WebControls.SeparatorMenultem class

A menu separator is a horizontal line between menu commands. To create a menu separator, add a
PeterBlum.DES.Web.WebControls.SeparatorMenultem object to the Items property on the ContextMenu.

Click on any of these topics to jump to them:

Appearance of Menu Separator Rows
Style sheet classes determine the appearance of the menu separator. The default classes are defined in
\DES\Appearance\lnteractive Pages\Menu.css.

By default, the SeparatorMenultem uses the class “DESMenuSeparator” to define the overall height of the separator line,
but you can change it in the SeparatorCssClass property on the ContextMenu control.

Here is the default style sheet:

-DESMenuSeparator
height:6px;
font-size:2pt;

}

The horizontal line itself is a second style sheet class that uses the border attribute to create the line. It always must declare a
second class name of “Line” after the same name used in the SeparatorCssClass property.

.DESMenuSeparator .Line

{
border-top: #a9%9a9a9 1px solid;
width: 100%;
height: 1px;
margin-top: 2px;
margin-bottom: 2px;

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 212 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES

A moouLe oF PETERS OATA ENTRY SUITEVS

Adding a PeterBlum.DES.Web.WebControls.SeparatorMenultem to the ContextMenu

In the Properties Editor, click on the button to the right of
the Items property or in the SmartTag [, select Define
Menu Items.

Click the Add button and select SeparatorMenultem.

Only fill in the CommandID property if you need to
programmatically access this element.

CommandMenultem Collection Editor

Members:

T+

Add '] ’ Remove

CommandMenultern

HintMenultem

[

+

---separator--- properties:

A
4 Command
CommandID 0

CommandID
The command ID.

ok ||

Cancel

SeparatorMenultem |

Define the SeparatorMenultem as a child of the ContextMenu with no properties.

<des:ContextMenu i1d=""ContextMenul"
<des:SeparatorMenultem />
</des:ContextMenu>

runat="server"

To add a Menu Separator programmatically, calls the method AddSeparator () on the ContextMenu control. It will be

added to the end of the Items property.
[C#]

public PeterBlum.DES.Web.WebControls.SeparatorMenultem AddSeparator();

[VB]

Public Function AddSeparator() As PeterBlum.DES.Web.WebControls.SeparatorMenultem

[C#]

protected void Page_Load(object sender, System.EventArgs e)

{

}
[VB]

ContextMenul.AddSeparator();

Private Sub Page Load(ByVal sender As Object, ByVal e As System.EventArgs)

ContextMenul .AddSeparator()
End Sub

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved

Page 213 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Properties for PeterBlum.DES.Web.WebControls.SeparatorMenultem
e CommandID (string) — This is an integer which allows you to uniquely identify a row. It has several usages:

0 To find and modify it programmatically.

needs to be enabled or disabled.

You can leave it unassigned (default of 0) if you do not need it for either of these cases.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 214 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Hint Rows: PeterBlum.DES.Web.WebControls.HintMenultem class

A hint is a row whose text fills the row and is not selectable. It’s used for descriptive information.

To create a hint, add a PeterBlum.DES .Web .WebControls.HintMenultem object to the Items property on the
ContextMenu.

Click on any of these topics to jump to them:

Appearance of Menu Hint Rows

Style sheet classes determine the appearance of the Hint. The default classes are defined in \DES\Appearance\lnteractive
Pages\Menu.css.

By default, the hint uses the class “DESMenuHiInt”, but you can change it in the CommandHintCssClass property on the
ContextMenu control.

Here is the default style sheet:

-DESMenuHint

{
color: #ab2a2a; /* brown */
background-color: #fFFF99;
border-right: #d3d3d3 thin inset;
border-top: #d3d3d3 thin inset;
border-left: #d3d3d3 thin inset;
border-bottom: #d3d3d3 thin inset;
padding-top: 2px;
padding-left: 2px;
padding-right: 2px;
padding-bottom: 2px;
margin-left: 2px;
margin-right: 2px;

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 215 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Adding a PeterBlum.DES.Web.WebControls.HintMenultem to the ContextMenu

Visual Studio and Visual Web Developer Design Mode CommandMenultem Collection Editor e)
In the Properties Editor, click on the button to the right of the Items Members Hint unassigned properties:
property or in the SmartTag [, select Define Menu Items. +| [3=fE1]
. . . . 4 Command
Click the Add button and select HintMenultem. Assign its + CommandD 0
properties including Hint for the text of the hint. 4 Hint

Hint
HintLookupID

CommandID
The command ID.

[Ad | [Remove |

CommandMenultemn] ’

0K C |
| HintMenultem | anee

SeparatorMenultermn

[

Define the HintMenultem as a child of the ContextMenu. Assign the Hint property to the hint text. Only assign the
CommandID property if you need to retrieve the HintMenultem object programmatically.

<des:ContextMenu id="ContextMenul" runat='"server" [various properties]>
<des:HintMenultem Hint="Maximum bet is $50" />
</des:ContextMenu>

To add a hint programmatically, call the method AddHint() on the ContextMenu control. It will be added to the end of the
Items property.

[C#]
public PeterBlum.DES.Web.WebControls.HintMenultem AddHint(string pHint);
[VB]

Public Function AddHint(ByVal pHint As String) _
As PeterBlum.DES.Web.WebControls.HintMenultem

Parameters
pHint
The text of the hint.
Return value

The PeterBlum.DES _Web_WebControls._HintMenultem object, already assigned to the Items property and with
the Hint property assigned.

Example
[C#]
protected void Page Load(object sender, System._EventArgs e)
{
ContextMenul.AddHint("'"Maximum bet is $50');
}
Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 216 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PACES
[VB]

A moouLe oF PETERS OATA ENTRY SUITEVS

Private Sub Page Load(ByVal sender As Object, ByVal e As System.EventArgs)
ContextMenul.AddHint(*'"Maximum bet is $50')
End Sub

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 217 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Properties for PeterBlum.DES.Web.WebControls.HintMenultem
e CommandID (string) — This is an integer which allows you to uniquely identify a row. It has several usages:
0 To find and modify it programmatically.

needs to be enabled or disabled.
You can leave it unassigned (default of 0) if you do not need it for either of these cases.
e Hint (string) — The text of the hint. It is required — it cannot be blank.

e HintLookuplD (string) — Gets the value for Hint through the String Lookup System. (See “String Lookup System” in
the General Features Guide.) The LookuplD and its value should be defined within the String Group of
ContextMenus. If no match is found OR this is blank, Hint will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookuplD and associated textual value in your data source (resource, database, etc). Assign the same
LookuplD to this property.

It defaults to ™.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 218 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Popup Controls: PeterBlum.DES.Web.WebControls.MenuActivator class

You must tell the Context Menu which controls popup a context menu by adding
PeterBlum.DES.Web.WebControls.MenuActivator object to the MenuActivators property. You can have as
many as you’d like. You also define if it pops up on a left or right mouse button. Left buttons always drop down from the
element pressed. Right buttons popup at the current mouse position.

There are two types of elements which Context Menu supports:

e Any document object model (DOM) element with an ID. When you create a page, all WebControls are assigned an ID
automatically and these IDs are what the Context Menu needs. If you use an HtmlControl, make sure it has an “ID="
parameter.

e The document.body DOM element. When the user clicks on this, it always pops up to the current mouse point, even
if the left mouse button is clicked.

Click on any of these topics to jump to them:

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 219 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Inserting Variables Into Your Scripts

When you write scripts using the ProcessCommandFunctionName property on the ContextMenu, you can let each
MenuActivator supply up to two variables that your scripts can use. The most common usage is to provide the DHTML
element id of the control itself so your scripts can modify that element on the page. For example, DES’s DateTextBox
provides a context menu with commands to modify the current date shown in the textbox. It supplies the ID of the TextBox
element so the context menu can pass it or its DHTML element to functions that support the DateTextBox.

These variables can take several types of information: reference to a control which is converted to the ClientID of that
control, string, integer, double, and boolean. If you have other types, consider passing data through a string and writing
client-side code that interprets your data.

Variables are set with the VariablelInScript and Variable2InScript properties. Inside your ProcessCommand function, the
Args parameter is an object that contains two properties: Tokenl and Token2. They will be in the native type of string
(including for Control’s ClientID), integer, floating point, or boolean.

You assign these VariablelnScript properties programmatically because their data is usually dynamic. With this in mind, you
probably will create PeterBlum.DES.Web.WebControls.MenuActivator objects programmatically when using
variables. For example:

ContextMenul.AddMenuActivator(ImageOnTextBox, PeterBlum.DES._MouseButtonType.Right,
TextBox1l, ''Start Date')

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 220 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Adding a PeterBlum.DES.Web.WebControls.MenuActivator to the ContextMenu

Add the PeterBlum._DES.Web.WebControls.MenuActivator objects to the MenuActivators property on the

ContextMenu. If you intend to support the VariablelInScript and Variable2InScript properties, add MenuActivator objects
programmatically.

In the Properties Editor, click on the button to the right of MenuActivatar Collection Editor (2 |
the MenuActivators property or in the SmartTag ™, select
Controls that Popup the Menu.

Members: Right button click on Buttonl properties:

] Right button click on Buttonl + =gl ‘

Click the Add button and assign its properties. s | “ Appearance
ContrellD Buttonl
If you need to assign VariablelInScript and Right [=]

Variable2InScript properties, you must do so
programmatically. It’s probably easiest to create the
MenuActivator programmatically in that case.

MouseButtonType

‘ I The mouse button that causes the popup

Add Remove menu to appear

oK] I Cancel

Add a child tag called “<MenuActivators>" and define the MenuActivator as a child of that tag:

<des:ContextMenu i1d=""ContextMenul" runat="'server" >
<MenuActivators>
<des:MenuActivator Controlld="TextBox1l" MouseButtonType="Left" />
<des:MenuActivator Controlld="" MouseButtonType="Right" />
</MenuActivators>
</des:ContextMenu>

If you need to assign VariablelInScript and Variable2InScript properties, you must do so programmatically. It’s probably
easiest to create the MenuActivator programmatically in that case

To add a PeterBlum.DES .Web .WebControls.MenuActivator programmatically, call the
AddMenuActivator () method on the ContextMenu control.

[C#]

public PeterBlum.DES.Web.WebControls.MenuActivator AddMenuActivator(
string pControllD,PeterBlum.DES.MouseButtonType pButtonType);

public PeterBlum.DES_Web.WebControls._MenuActivator AddMenuActivator(
Control pControl,PeterBlum.DES._MouseButtonType pButtonType);

public PeterBlum.DES.Web.WebControls.MenuActivator AddMenuActivator(
string pControllD,PeterBlum.DES._MouseButtonType pButtonType,
object pVariablellnScript, object pVariable2lnScript);

public PeterBlum.DES.Web.WebControls.MenuActivator AddMenuActivator (
Control pControl, PeterBlum.DES.MouseButtonType pButtonType,
object pVariablellnScript, object pVariable2lnScript);

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 221 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

[VB]

Public Function AddMenuActivator(ByVal pControllD As String, _
ByVal pButtonType As PeterBlum.DES.MouseButtonType) As
PeterBlum.DES._Web.WebControls._MenuActivator

Public Function AddMenuActivator(ByVal pControl As Control, _
ByVval pButtonType As PeterBlum.DES.MouseButtonType) As
PeterBlum.DES.Web.WebControls.MenuActivator

Public Function AddMenuActivator(ByVal pControllD As String, _
ByVal pButtonType As PeterBlum.DES._MouseButtonType, _
ByVal pVariablellnScript As Object, ByVal pVariable2InScript As Object) _
As PeterBlum.DES.Web.WebControls.MenuActivator

Public Function AddMenuActivator(ByVal pControl As Control, _
ByVal pButtonType As PeterBlum.DES.MouseButtonType, _
ByVal pVariablellnScript As Object, ByVal pVariable2InScript As Object) _
As PeterBlum.DES.Web._.WebControls.MenuActivator

Parameters
pControllD
Assigned to the ControlID property. When using document . body, pass "".
pControl
Assigned to the Controllnstance property. When using document . body, pass nul .
pButtonType
Assigned to MouseButtonType property.
pVariablelInScript
Assigned to the VariablelInScript property. Pass nul I if not used.
pVariable2InScript
Assigned to the Variable2InScript property. Pass nul I if not used.
Return Value

Returns the PeterBlum.DES.Web.WebControls.MenuActivator object that was created. It has already been
added to the MenuActivators property of the ContextMenu and its properties are assigned to the values passed in.

In this example, the Page_Load () method will add the same elements shown above in the ASP.NET Markup example.
[C#]

protected void Page Load(object sender, System.EventArgs e)

{
ContextMenul.AddMenuActivator('TextBox1l", MouseButtonType.Left);
ContextMenul.AddMenuActivator(null, MouseButtonType.Right);

}
[VB]

Protected Sub Page Load(ByVal sender As Object, _

ByVal e As System.EventArgs)
ContextMenul.AddMenuActivator('TextBox1', MouseButtonType.Left)
ContextMenul.AddMenuActivator(Nothing, MouseButtonType.Right)

End Sub

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 222 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Properties for PeterBlum.DES.Web.WebControls.MenuActivator

e ControllD (string) — When a control pops it up, set the ID of the control. The control must be in the same or a parent
Naming Container of the Context Menu. When the control is not in the same naming container, assign the control
reference programmatically to the Controllnstance property (below).

If you want to select document . body, leave this unassigned.

e Controllnstance (Control) — A reference to the control that pops up the ContextMenu. It is an alternative to ControllD
that allows the control to be anywhere on the page instead of the same naming container as the ContextMenu control.
You must assign it programmatically.

When assigned, it overrides the value of ControllD.

e MouseButtonType (enum PeterBlum.DES.MouseButtonType) — Which mouse button pops it up: Left, Right, or
Both.

e VariablelInScript (object) — Provides a value for use by the ProcessCommand function that is unique for this

This is an object type to allow any type passed. However, it’s limited to these types:
Control (will use the clientID), string, integer, double, and boolean.

When nul I, nothing is set up.

It defaults to null 1.

e Variable2InScript (object) — Provides a value for use by the ProcessCommand function that is unique for this

This is an object type to allow any type passed. However, it’s limited to these types:
Control (will use the clientlD), string, integer, double, and boolean.
When nul I, nothing is set up.

It defaults to nul 1.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 223 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Using the DropDownMenu control

The DropDownMenu is a button that has an attached ContextMenu. Most of the setup involves modifying the Menu
property. It is a full ContextMenu control (aside from not having an ID property and no setup for the MenuActivators

This topic focuses on customizing the button.

Click on any of these topics to jump to them:

> e & & o o
<
@D
>
c
0
(o]
3
3
Q
>
o
0
0
@
@
@
C
3
(]
m
%
=
@D
ISh
=
)
(o
O
(o]
=
o
7
0
(o]
3
3
QD
>
o
<
(0]
>
c
o
3
o
Q
w0
(7]

Customizing the Toggle button

When using the DropDownMenu, the user initially sees a toggle button. When clicked, it pops up the ContextMenu. The
popup’s toggle can be an image, button, or text. Set it using these properties: ToggleType, TogglelmageUrl, and
ToggleText. See “!11”,

These properties default to use the image ™ at \DES\Appearance\Shared\SmallDownArrow.gif with the style sheet
class DESMenuPopup from the style sheet file \DES\Appearance\interactive Pages\Menu.css. If you prefer to show a
textual label, set ToggleType to ToggleType . Text and assign your label to ToggleText.

You can have it automatically popup when the mouse passes over the button by setting PopupOnMouseOver to true.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 224 of 309

http://www.peterblum.com/des/support.aspx�
http://learningdes.peterblum.com/InteractivePages/Menu.aspx?Topic=Menu�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Adding a ContextMenu

These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View

ﬂ command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. Prepare the page for DES controls. See “Preparing a page for DES controls” in the General Features Guide. It covers
issues like style sheets, AJAX, and localization.

2. Add a ContextMenu control to the page.

Add the control (inside the <form> area):

<des:ContextMenu id="[YourControllD]" runat="server"™ />

o ldentify the control which you will add the ContextMenu control to its Controls collection. Like all ASP.NET
controls, the ContextMenu can be added to any control that supports child controls, like Panel, User Control, or
TableCell. If you want to add it directly to the Page, first add a PlaceHolder at the desired location and use the
PlaceHolder.

e Create an instance of the ContextMenu control class. The constructor takes no parameters.

e Assign the ID property.

e Add the ContextMenu control to the Controls collection.

In this example, the ContextMenu is created with an 1D of “ContextMenul”. It is added to PlaceHolder1.
[C#]

PeterBlum.DES.Web._.WebControls.ContextMenu vContextMenu =
new PeterBlum.DES._Web.WebControls.ContextMenu();

vContextMenu.ID = "ContextMenul™;
PlaceHolderl.Controls.Add(vContextMenu);
[VB]

Dim vContextMenu As PeterBlum.DES.Web.WebControls.ContextMenu = _
New PeterBlum.DES.Web.WebControls.ContextMenu()

vContextMenu.ID = "ContextMenul"

PlaceHolderl.Controls.Add(vContextMenu)

Guidelines for setting properties
o Design mode users can use the Properties Editor or the Expanded Properties Editor. (See “Expanded Properties
Editor” in the General Features Guide.) The SmartTag ™ also offers some of the most important properties.

e Text entry users should add the properties into the <des:ControlClass> tag in this format:
propertyname="value"

e When setting a property programmatically, have a reference to the control’s object and set the property according to
your language’s rules.

3. Add menu items to the Items property.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 225 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

4. Connect the context menu to controls where it will popup when the mouse is clicked. You can specify which mouse

7. Here are some other considerations:

e If you are using an AJAX system to update this control, set the INAJAXUpdate property to true. Also make sure
the PageManager control or AJAXManager object has been setup for AJAX. See “Using these Controls With
AJAX” in the General Features Guide. Failure to follow these directions can result in incorrect behavior and
javascript errors.

e This control does not preserve most of its properties in the ViewState, to limit its impact on the page. If you need to
use the ViewState to retain the value of a property, see “The ViewState and Preserving Properties for PostBack” in
the General Features Guide.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 226 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Complete Example

This example consolidates the previous examples for ASP.NET.

<des:ContextMenu id="ContextMenul' runat="'server" [various properties]>
<des:CommandMenultem CommandID="100" CommandLabel=""Show Cards"
onClickScript="ShowCards();" />
<des:SeparatorMenultem />
<des:CommandMenultem CommandID="101" CommandLabel="Bid $10"
CommandKey="B" OnClickScript="Bid(10.00);" />
<des:HintMenultem Hint="Maximum bet is $50" />
<MenuActivators>
<des:MenuActivator ControlID="TextBox1l"™ MouseButtonType="Left" />
<des:MenuActivator ControlID="" MouseButtonType="Right" />
</MenuActivators>
</des:ContextMenu>

This example consolidates the previous examples for programming.
[CH#]

protected void Page_Load(object sender, System.EventArgs e)

{
ContextMenul .AddCommand(100, *Show Cards'™, "', "ShowCards();');
ContextMenul.AddCommand(101, *"Bid $10", *"B"™, "Bid(10.00);');
ContextMenul .AddSeparator();
ContextMenul.AddHint("'"Maximum bet is $50™);

ContextMenul.AddMenuActivator ("'MyTextBoxID", MouseButtonType.Left);
ContextMenul.AddMenuActivator ("', PeterBlum.DES.MouseButtonType.Right);
}

[VB]

Protected Sub Page Load(ByVal sender As Object, ByVal e As System.EventArgs)
ContextMenul .AddCommand(100, *Show Cards', ', "ShowCards();')
ContextMenul.AddCommand(101, 'Bid $10', "B", "Bid(10.00);')

ContextMenul .AddSeparator()
ContextMenul.AddHint("'"Maximum bet is $50')

ContextMenul .AddMenuActivator("'MyTextBoxID", PeterBlum.DES_MouseButtonType.Left)
ContextMenul .AddMenuActivator ("' ,PeterBlum.DES._MouseButtonType.Right)
End Sub

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 227 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Adding a DropDownMenu

0 Q

1.

These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

Prepare the page for DES controls. See “Preparing a page for DES controls” in the General Features Guide. It covers
issues like style sheets, AJAX, and localization.

Add a DropDownMenu control to the page.

Add the control (inside the <form> area):

<des:DropDownMenu id="[YourControllID]" runat="server' />

o Identify the control which you will add the DropDownMenu control to its Controls collection. Like all ASP.NET
controls, the DropDownMenu can be added to any control that supports child controls, like Panel, User Control, or
TableCell. If you want to add it directly to the Page, first add a PlaceHolder at the desired location and use the
PlaceHolder.

o Create an instance of the DropDownMenu control class. The constructor takes no parameters.

e Assign the ID property.

e Add the DropDownMenu control to the Controls collection.

In this example, the DropDownMenu is created with an ID of “DropDownMenul”. It is added to PlaceHolder1.
[C#]

PeterBlum.DES.Web.WebControls.DropDownMenu vDropDownMenu =
new PeterBlum._DES.Web.WebControls.DropDownMenu();

vDropDownMenu. 1D = "'DropDownMenul™;

PlaceHolderl_Controls.Add(vDropDownMenu) ;

[VB]

Dim vDropDownMenu As PeterBlum.DES.Web.WebControls.DropDownMenu = _
New PeterBlum.DES.Web._WebControls.DropDownMenu()

vDropDownMenu. 1D = "‘DropDownMenul"

PlaceHolderl1_Controls.Add(vDropDownMenu)

Guidelines for setting properties
o Design mode users can use the Properties Editor or the Expanded Properties Editor. (See “Expanded Properties
Editor” in the General Features Guide.) The SmartTag ™ also offers some of the most important properties.

e Text entry users should add the properties into the <des:ControlClass> tag in this format:
propertyname="value"

e When setting a property programmatically, have a reference to the control’s object and set the property according to
your language’s rules.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 228 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

3. Set the properties associated with the DropDownMenu such as ToggleType and TogglelmageUrl. See “I!1”.

The ASP.NET markup for these nested controls is shown here (the Items property can be omitted).

<des:DropDownMenu id="ContextMenul" runat="server" [various properties]>
<Menu [various properties]>
<des:CommandMenultem [various properties] />
<des:CommandMenultem [various properties] />
<des:CommandMenultem [various properties] />
</Menu>
</des:DropDownMenu>

5. If desired, set up your ProcessCommand function script on the page and assign its name to the

7. Here are some other considerations:

e Ifyou are using an AJAX system to update this control, set the INAJAXUpdate property to true. Also make sure
the PageManager control or AJAXManager object has been setup for AJAX. See “Using these Controls With
AJAX” in the General Features Guide. Failure to follow these directions can result in incorrect behavior and
javascript errors.

e This control does not preserve most of its properties in the ViewState, to limit its impact on the page. If you need to
use the ViewState to retain the value of a property, see “The ViewState and Preserving Properties for PostBack” in
the General Features Guide.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 229 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Complete Example

This example consolidates the previous examples for ASP.NET

<des:DropDownMenu id="DropDownMenul™ runat="'server'" [various properties]>
<Menu>
<des:CommandMenultem CommandID="100" CommandLabel=""Show Cards"
OnClickScript="ShowCards();" />
<des:SeparatorMenultem />
<des:CommandMenultem CommandID="101" CommandLabel="Bid $10"
CommandKey="B" OnClickScript="Bid(10.00);" />
<des:HintMenultem Hint="Maximum bet is $50" />
</Menu>
</des:DropbDownMenu>

This example consolidates the previous examples for programming.
[C#]

protected void Page_Load(object sender, System.EventArgs e)

{
DropDownMenul .Menu.AddCommand(100, *'Show Cards', "', "ShowCards();');
DropDownMenul._Menu.AddCommand(101, "'Bid $10", 'B", "Bid(10.00);');
DropDownMenul .Menu.AddSeparator();
DropDownMenul._Menu.AddHint("*Maximum bet is $50');

DropDownMenul .Menu.AddMenuActivator (""MyTextBoxID",
PeterBlum.DES._MouseButtonType.Left);
DropDownMenul .Menu.AddMenuActivator (""", PeterBlum._DES.MouseButtonType.Right);

}

[VB]

Protected Sub Page_ Load(ByVal sender As Object, ByVal e As System.EventArgs)
DropDownMenul .Menu.AddCommand(100, *'Show Cards', "', "ShowCards();')
DropDownMenul._Menu.AddCommand(101, "Bid $10", "B', "Bid(10.00);'™)

DropDownMenul .Menu.AddSeparator ()
DropDownMenul.Menu.AddHint("*Maximum bet is $50'")

DropDownMenul .Menu.AddMenuActivator (""MyTextBoxID",
PeterBlum.DES._MouseButtonType.Left)
DropDownMenul .Menu.AddMenuActivator ("' ,PeterBlum.DES _MouseButtonType.Right)
End Sub

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 230 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Properties of the ContextMenu
The ContextMenu is subclassed from the Microsoft supplied control Panel (System.Web.Ul.WebControls.Panel). See

Menu Structure Properties
The Properties Editor lists these properties in the “Menu Structure” category.

e Items (PeterBlum.DES.Web.HtmIMenultems) — A collection of the items that are displayed in the context menu,
including menu commands, menu separators, and hints. Add the following objects to it:

¢ Menu Commands: PeterBlum.DES.Web.WebControls.CommandMenultem class

e MenuActivators (PeterBlum.DES.MenuActivators) — A list of controls that will popup the context menu. Add
PeterBlum.DES.Web.WebControls.MenuActivator objects to it.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 231 of 309

http://www.peterblum.com/des/support.aspx�
http://msdn2.microsoft.com/en-us/library/system.windows.forms.panel_members.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Menu Item Appearance Properties
The Properties Editor lists these properties in the “Menu Item Appearance” category.

CommandRowCssClass (string) — A style sheet class name applied to rows showing a menu command
(PeterBlum_DES_Web._WebControls.CommandMenultem class).

A row is defined in HTML by a <div> tag assigned to this style sheet class and contains two <div> tags. The left
<div> tag displays the command label (CommandMenultem.CommandLabel). The right <d iv> tag displays the
keystroke (CommandMenultem.CommandKey).

Use the style sheet classes DESMenulLabel for the command label and DESMenuKey for the keystroke. To achieve the
correct appearance, DESMenuLabe l and DESMenuKey use special positioning attributes of float and
position:relative. Attimes, the label and key will overlap due to these attributes. When that happens, increase
the width of the control in the Width property.

<div class="DESMenuCommand"'>
<div class="DESMenulLabel'>Command Label</div>
<div class="DESMenuKey">Command Key</div>
</div>

It defaults to "DESMenuCommand”.

This style is declared in DES\Appearance\lnteractive Pages\Menu.css.
-DESMenuCommand

height:20px;
padding-top:4px;
}

CommandLabelCssClass (string) — The style sheet class name applied to the CommandLabel of the
CommandMenultem. See above for the structure of a Menu Command Row.

It defaults to "DESMenulLabel".

To achieve the correct appearance, DESMenuLabel uses special positioning attributes of Float and
position:relative. Attimes, the label and key will overlap due to these attributes. When that happens, increase
the width of the control in the Width property.

This style is declared in DES\Appearance\interactive Pages\Menu.css.
-DESMenuLabel

{
text-align: left;
/* float and position here allow varying width labels to be complimented by
varying width keystrokes. ITf these two elements overlap, consider changing
the overall width of the ContextMenu control in its Width property. */
float: left;
position:relative;
left:16px;
}

CommandKeyCssClass (string) — The style sheet class name applied to the CommandKey of the CommandMenultem.
See above for the structure of a Menu Command Row.

It defaults to "DESMenuKey".

To achieve the correct appearance, DESMenuKey uses special positioning attributes of float and
position:relative. Attimes, the label and key will overlap due to these attributes. When that happens, increase
the width of the control in the Width property.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 232 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

This style is declared in DES\Appearance\interactive Pages\Menu.css.
-DESMenuKey

text-align:left;
/* Float and position here allow varying width labels to be complimented by
varying width keystrokes. ITf these two elements overlap, consider changing
the overall width of the ContextMenu control in its Width property. */
float:right;
position:relative;
left:-16px;
}

e CommandHintCssClass (string) — The style sheet class name applied to hint rows, as defined by
PeterBlum.DES.Web.WebControls._HintMenultem objects. Hints should look different from menu
commands. So the default style sheet provides a different font color, background color, and establishes borders.

It defaults to "DESMenuHint".

This style is declared in DES\Appearance\interactive Pages\Menu.css.

-DESMenuHint

{
color: #ab2a2a; /* brown */
background-color: #ffff99;
border-right: #d3d3d3 thin inset;
border-top: #d3d3d3 thin inset;
border-left: #d3d3d3 thin inset;
border-bottom: #d3d3d3 thin inset;
padding-top: 2px;
padding-left: 2px;
padding-right: 2px;
padding-bottom: 2px;
margin-left: 2px;
margin-right: 2px;

}

e SeparatorCssClass (string) — The style sheet class name applied to menu separator rows, as defined by
PeterBlum.DES.Web.WebControls.SeparatorMenultem objects.

It defaults to "DESMenuSeparator". This class defines the overall height of the separator line. The horizontal line
itself is a second style sheet class that uses the border attribute to create the line. It always must declare a second class
name of “Line” after the same name used in the SeparatorCssClass property

For example, when SeparatorCssClass = “SeparatorClass”:
-SeparatorClass .Line
These styles are declared in DES\Appearance\interactive Pages\Menu.css.

-DESMenuSeparator

{
height:6px;
font-size:2pt;

}
-.DESMenuSeparator .Line
{
border-top: #a9%9a9%9a9 1px solid;
width: 100%;
height: 1px;
margin-top: 2px;
margin-bottom: 2px;
}
Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 233 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

o MouseOverCssClass (string) — The style sheet class name that creates the mouseover effect on Menu Command Rows.

It can be merged with the current style sheet name by putting a + character before the style sheet name in the
MouseOverCssClass property. When + is before the name, the actual class will be [normalclass] [thisclass].

When there is no leading + character, only this class is applied to the row.

It defaults to "+DESMenuMouseOver". The default style is designed to merge, by only changing the background color
of Menu Comand Rows.

This style is declared in DES\Appearance\lnteractive Pages\Menu.css.

-DESMenuMouseOver
{
background-color: #3366c¢ccC;
}
Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 234 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Overall Appearance Properties
The Properties Editor lists these properties in the “Overall Appearance” category.

e CssClass — The style sheet class for the overall control. Use it to establish font, background, and borders. Its attributes

It defaults to "DESMenu". If you want to establish a shadow effect, set the UseShadowEffect property to true.
This style is declared in DES\Appearance\interactive Pages\Menu.css.

-DESMenu

{
background-color: white;
color: black;
font-size: 8pt;
font-family: Arial;
border-right: #a9a9a9 1px solid; /* dark grey */
border-top: #a%a9a9 1px solid;
border-left: #a%a%9a9 1px solid;
border-bottom: #a%9a%9a9 1px solid;
padding-top: 2px;
padding-left: 2px;
padding-right: 2px;
padding-bottom: 2px;

}

e Font, BackColor, BacklmageUrl, BorderStyle, BorderWidth, BorderColor and ForeColor — These properties are
alternatives to using the CssClass property. If you have both assigned, these properties override their counterparts in
CssClass. Recommendation: Use the style sheet class defined in CssClass.

are shown. If you have many menu items, the height may need to be limited to fit on the page. When set, the menu will
add a vertical scrollbar so the user can move through all commands. It is unassigned by default.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 235 of 309

http://www.peterblum.com/des/support.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.unit.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.unit.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Popup Behavior Properties

These properties affect how the popup panel pops up and down. The Properties Editor lists these properties in the “Popup
Behavior” category.

UsePopupEffect (Boolean) — When true, Internet Explorer users will see the context menu fade in as it pops up and
fade out as it pops down. This effect can be customized. See “Customizing the Popup Effect” in the Date and Time
User’s Guide. It defaults to true.

Note: On pages that are very large, either in bytes or screen real-estate, this feature can cause popups and popdowns to
have a delay. Set this property to false when that is the case.

IsPopup (Boolean) — When menu can popup or be displayed full time as a control on the page. When true, it pops up.
When False, it does not. It defaults to true.

OnPopup (string) — Specify a client side JavaScript function that is called when the control is popping up. It is called
just prior to making the control visible. Use it to transfer data into the popup. It should not include the heading
"javascript:". It should always conclude with a semicolon or end brace as multiple users can append or prefix any code

you add with their own code. It defaults to ™.

OnPopDown (string) - Specify a client side JavaScript function that is called when the control is popping down. It is
called just prior to making the control invisible. Use OnPopDown for any cleanup that always happens on pop down. It
should not include the heading "javascript:". It should always conclude with a semicolon or end brace as multiple users

can append or prefix any code you add with their own code. It defaults to ™.

IEFixPopupOverList (Boolean) — Internet Explorer for Windows versions 5.0 through 6. have a problem allowing
absolutely positioned objects appearing over ListBox and DropDownL.ists. There is a special hack that uses an IFrame
and filter style sheet to make it appear like it’s over these controls. This property enables that hack on IE versions 5.5-6.
(IE 5 doesn't support the hack; IE 7 doesn't require the hack.)

The hack is imperfect. It breaks when another IFrame is in the same area of the page. By "breaks", this means the popup
usually looks incorrect including being transparent.

Turn off the hack to work around this problem. Set this property to false. But you should only do this when the popup
does not overlap any listboxes or dropdownlists. If there is overlap, you have to make a design decision to change your
positioning or avoid using the IFrame.

When true, the hack is used when the browser is Internet Explorer for Windows versions 5.5 through 6..
When fal se, the hack not used. Choose this when the hack causes visual problems such as a transparent popup.

It defaults to true.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 236 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Behavior Properties
The Properties Editor lists these properties in the “Behavior” category.

e Visible (Boolean) — When Fal se, the control does not output any HTML. The control is effectively turned off. It
defaults to true.

When false, no HTML is written to the page. If you want to be able to show and hide the control on the client-side, leave
this property set to true so that all of the HTML is generated. Then use the FieldStateController to change the
visibility. See the Interactive Pages User’s Guide for details on the FieldStateController.

e InAJAXUpdate (Boolean) — When using AJAX on this page, set this to true if the control is involved in an AJAX
update. See “Using These Controls with AJAX” in the General Features Guide. It defaults to false.

¢ ProcessCommandFunctionName (string) — Optional client-side function that is called when a menu item is selected.
This function allows standardized code to be in one place that handles multiple commands. For example, the
DateTextBox predefines a mapping to each command and has a function to handle its commands in its script file. It also
allows multiple controls to use the same context menu by supplying two variables from each
PeterBlum.DES.Web.WebControls.MenuActivator object's VariablelInScript and Variable2InScript

The ProcessCommand function takes these parameters:

0 CommandID - Integer. The command ID that was invoked. Its value comes from the
CommandMenultem.CommandID. If the CommandMenultem.CommandID is 0, it never calls your
ProcessCommand function.

0 Args - JavaScript object containing the following properties:
= MenulD - string. ClientID of the ContextMenu control that invoked this function.

= TglID - string. “TogglelD”. ClientID of the control that activated the menu. If nul I, document._body

activated this menu. Use the DES_GetBy 1d() function if you need to convert TglID into its DHTML
element.

= Tokenl - The value from MenuActivator.VariablelInScript. It may be nul 1.
= Token2 - The value from MenuActivator.Variable2InScript. It may be nul I.

= Src- The DHTML element associated with the click that opens the menu. It may not be the same as the
control associated with the MenuActivator, especially because the control contains child HTML elements
and the actual HTML element under the mouse pointer is what is returned. You may have to search through
the parent elements to find the desired element.

This property will be nul I if the menu was invoked without a mouse click, such as through a keystroke
command.

Your function should return true to continue running scripts and False if no further processing should occur.

Note: Many users make the mistake of assigning JavaScript code to the ProcessCommandFunctionName property. This
will cause JavaScript errors. GOOD: “MyFunction”. BAD: “MyFunction();”” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of ProcessCommandFunctionName exactly matches the function
definition.

PeterBlum.DES.Web.WebControls.CommandMenultems will run validation, confirm message, and the
OnClickScript before calling this function.

EXAMPLES START ON THE NEXT PAGE

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 237 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

This example is a snippet from the DES DateTextBox’s context menu function. It assumes
MenuActivator.VariablelInScript is the id of the DateTextBox so it knows how to update that control’s value. The
ProcessCommandFunctionName property is assigned “DES_DTBMenuCmd”. The script functions are documented in

the Date and Time User’s Guide
function DES_DTBMenuCmd(pCmdID, pArgs)

{
var vDTB = DES_GetByld(pArgs.Tokenl); // contains id to textbox
switch (pCmdID)
{
case 10: // next day
DES_DTBAddDays(vDTB, -1);
break;
case 11: // previous day
DES_DTBAddDays(vDTB, 1);
break;
case 2: // today
DES_DTBTodayCmd(vDTB);
break;
}
return true;
}
ANOTHER EXAMPLE IS ON THE NEXT PAGE
Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 238 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

A DES Calendar control needs an “Add Appointment” command for each date in the menu. It will use this instead of the
predefined context menu offered by the calendar. It defines the command ID 1000 whose task is to determine the date of
the selected cell, write that date as a string to a hidden field and postback. On the server side, the ContextMenu

<script type="text/javascript'>
function AddAppointment(pCmdID, pArgs)

{

ifT (pCmdID !'= 1000) return false; // error check against invalid commands
it (pArgs.Src == null) return false;

// Use pArgs.Src to get the DHTML element that invoked the context menu
// Convert that to the Date of the date cell. If not found, stop
// The Calendar assigns a property called "Date"™ to each Date cell.
// That is used to detect the DateCell and get the javascript date object
var vDate = null;
var vCellRole = null;
for (var VvSE = pArgs.Src; (VvSE != document) && (VSE I= null);
VSE = vSE.parentNode)

{
if (vSE.Date) // found a Date cell
{
vDate = vSE.Date;
vCellRole = vSE.CellRole;
break;
b
b

if (vDate == null)

alert("'Please click on a date element of the calendar.');
return false;

}

// vCellRole determines the context of the cell.
// Values 0-9 indicate a selectable date in the current month.
// 10 and 11 indicate a selectable date in the previous and next months
// respectively. All values above 11 are unselectable.
// 12 = unselectable due to SpecialDates.
// 14 = out of range MinDate-MaxDate
it (vCellRole > 11)

{
if (vCellRole == 12)
alert('That date cannot be selected for an appointment.');
return false;
}

var vStorage = DES GetByld(''<% =DateSelected.ClientID %>");

var vFormattedDate = DES_FmtDate2(vDate, "yyyy-MM-dd™, O, null);
vStorage.value = vFormattedDate; // save for postback to use
return true;

}
</script>
CONTINUED ON THE NEXT PAGE
Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 239 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

<des:Calendar ID="Calendarl' runat="Server" EnableContextMenu="false" />
<des:ContextMenu ID=""ContextMenu" runat="server"
ProcessCommandFunctionName="AddAppointment"
OnMenuSelected=""ContextMenu_MenuSelected'>
<des:CommandMenultem CommandID="1000" CommandLabel=""Add Appointment"
PostBack="True" />
<MenuActivators>
<des:MenuActivator ControllD="Calendarl' MouseButtonType="Right" />
</MenuActivators>
</des:ContextMenu>
<asp:HiddenField ID="DateSelected" runat="'server" />

[C#]

protected void ContextMenu_MenuSelected(object pSender,
PeterBlum.DES._MenuCommandIDEventArgs pArgs)

{
ifT (pArgs.CommandID != 1000) return;
if (IString.IsNullOrEmpty(DateSelected.Value))
{
DateTime vDateSelected;
if (DateTime.TryParse(DateSelected.Value, out vDateSelected))
{
// use the Date
// Example: Select the date
Calendarl.SelectedDate = vDateSelected;
}
}
}
[VB]

Protected Sub ContextMenu_MenuSelected(ByVal pSender As Object, _
ByVal pArgs As PeterBlum.DES.MenuCommandIDEventArgs)

IT pArgs.CommandID !'= 1000 Return

IT Not String.IsNullOrEmpty(DateSelected.Value) Then
Dim vDateSelected As DateTime

IT DateTime.TryParse(DateSelected.Value, vDateSelected) Then
" use the Date
" Example: Select the date
Calendarl.SelectedDate = vDateSelected
End If
End If
End Sub

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 240 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES

EnableltemsFunctionName (string) - You can add a JavaScript function that makes commands visible or invisible prior
to popping up. Use a function when commands vary based on conditions of the page. In this property, define the name of
a client-side function that will indicate if a menu command is enabled (actually visible) based on its CommandID.

Your function will be called as the context menu is popped up. Every commandID will be passed to your function, one at
a time. Your function should evaluate the commandID and return either true to show it or false to hide it.

The function takes two parameters, the ClientID of the ContextMenu and the CommandID. It must return true or false.

It defaults to """

Note: Many users make the mistake of assigning JavaScript code to the EnableltemsFunctionName property. This will
cause JavaScript errors. GOOD: “MyFunction”. BAD: “MyFunction();” and “alert(*stop it”)”.

Note: JavaScript is case sensitive. Be sure the value of EnableltemsFunctionName exactly matches the function
definition.

function EnableMenu(pMenulD, pCmdID)

{
// 1T the context menulD is "ContextMenul'™, hide CommandID 20

it ((pMenulD == "ContextMenul™) && (pCmdID == 20))
return false;
return true;

}

true. Its arguments provide the CommandID that was selected. Here is the event handler definition:
[C#]

public void MenuCommandID(object pSender,
PeterBlum.DES.MenuCommand IDEventArgs pArgs);

[VB]

Public Sub MenuCommandID(object pSender,
PeterBlum.DES._MenuCommand IDEventArgs pArgs);

Parameters

sender
An internal representation of the ContextMenu.
args

The PeterBlum.DES .MenuCommand IDEventArgs class provides additional inputs that are useful to your

[C#]

public class MenuCommandIDEventArgs : System.EventArgs
{ public short CommandID { get; } }

[VB]

Public Class MenuCommandIDEventArgs Inherits System.EventArgs
Public ReadOnly Property CommandID As Short
End Class

Page 241 of 309

A moouLe oF PETERS OATA ENTRY SUITEVS

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

ClientSideCreatesHTML (enum PeterBlum.DES.Web.ClientSideCreatesHTML) — Determines if some of the HTML is
created on the client-side. This reduces the size of the HTML output, but may slow down the initialization of the page or
the time to first open the popup.

The enumerated type PeterBlum.DES.Web.ClientSideCreatesHTML has these values:

0 Default - Uses the default from ClientSideCreatesHTMLPopup which is set in the Global Settings
Editor.

0 None - Fully created by the server and transferred in the page's HTML.

0 EventScripts - While the HTML will be created on the server side, don't create the embedded DHTML
events. Instead, let the client-side set them up. That will reduce the HTML size and put more work on the client-
side during initialization, but not as much as BrowserLoads and FirstPopup.

0 BrowserLoads - As the page is loading into the browser. May cause a slightly longer page initialization.
0 FirstPopup - When the calendar is first popped up. May cause a delay before the control is popped up.
It defaults to ClientSideCreatesHTML .Default.

Note: When PeterBlum.DES.Globals.WebFormDirector.Browser.SupportsClientSideCreatesHTML is False, it
always prepares the HTML on the server side.

ViewStateMgr (PeterBlum.DES.Web.WebControls.ViewStateMgr) — Enhances the ViewState on this control to provide
more optimal storage and other benefits. Normally, the properties of this control and its segments are not preserved in the
ViewState. When working in ASP.NET markup, define a pipe delimited string of properties in the PropertiesToTrack
property. When working in code, call ViewStateMgr . TrackProperty(*'propertyname') to save the
property. Individual segments have a similar method: TrackPropertyInViewState('propertyname’™).

For more details, see “The ViewState and Preserving Properties for PostBack” in the General Features User’s
Guide.

PropertiesToTrack (string) — A pipe delimited list of properties to track. Designed for use in markup and the properties
editor. The ViewState is not automatically used by most of these properties. To include a property, add it to this pipe
delimited list.

For example, "Group|MayMoveOnClick".
When working programmatically, use ViewStateMgr.TrackProperty("PropertyName").

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 242 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Popup Location Properties

applies on a left mouse click as right mouse clicks are relative to the mouse position.

The Properties Editor lists these properties in the “Popup Location” category.

e HorizPosition (enum PeterBlum.DES.HorizPosition) - Positions the popup panel relative to the toggle control. It has
these values:

(0]

O O O O

LeftSidesAl ign — Left sides of both controls are flush.

Center - Objects are centered to each other.

RightSidesAl ign — Right sides of both controls are flush. This is the default.
PopupToRight — Left side of the popup is flush with the right side of the toggle.
PopupToLeft - Right side of the popup is flush with the left side of the toggle.

e HorizPositionOffset (Int16) — Adjusts the horizontal position of the popup by a number of pixels to allow more precise
positioning for HorizPosition. If negative, the popup panel moves left. Positive moves right. Zero does nothing. It
defaults to 0.

e VertPosition (enum PeterBlum.DES.VertPosition) — Positions the popup panel relative to the toggle control. It has these

values:

(0}

(o}

(o}

(o}

PopupBelow — Top of the popup is below the toggle. This is the default.
Center - Objects are centered to each other.

PopupAbove - Bottom of the popup is above the toggle.
TopSidesAlign - Tops of both are flush.

e VertPositionOffset (Int16) — Adjusts the vertical position of the popup by a number of pixels to allow more precise
positioning for VertPosition. If negative, the popup panel moves up. Positive moves down. Zero does nothing. It
defaults to 0.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 243 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES

A moouLe oF PETERS OATA ENTRY SUITEVS

Properties of the DropDownMenu

The next sections include properties found directly on the DropDownMenu control.

| Click on any of these topics to jump to them:

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved

Page 244 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Toggle Control Properties
The properties of the toggle control are set in the Properties Editor under the “Appearance” and “Toggle Control” categories.

e ToggleType (enum PeterBlum.DES.ToggleType) — Determines the appearance of the toggle button.
The enumerated type has these values:

0 Text - Uses a label (which is a tag). The label’s text is supplied by ToggleText. The style sheet class
is supplied by CssClass. If ToggleText contains the “{IMAGE}” token, it is replaced by an tag to the
TogglelmageUrl.

0 Button - Uses an HTML button (which is an <input type="button®> tag). Its text is supplied by
ToggleText.

o0 Image - Uses an image (which is an tag). The URL is supplied by TogglelmageUrl. This is the
default.

0 HyperLink - Uses a hyperlink (which is an <a> tag). Uses either or both ToggleText and TogglelmageUrl.
Define the text in ToggleText and use the “{IMAGE}” token if you want an tag with the URL in
TogglelmageUrl. Examples: “{IMAGE}”, “{IMAGE} ContextMenu”.

e ToggleText (string) — The label for the control when ToggleType is ToggleType.Text or ToggleType.Button.
It defaults to “Menu”.

e TogglelmageUrl (string) — The URL to the image file shown when ToggleType is ToggleType. Image. Itis also
used when ToggleType=Text or HyperLink if ToggleText contains the “{IMAGE}” token. That token is replaced
by an tag to this URL.

It defaults to "{APPEARANCE}/Shared/Smal 1DownArrow.gif" which is this graphic: ~.

It uses the style sheet class from CssClass. The tag gets its value for the al t= attribute from ToggleText.

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined as
you set up the web site.

Supports the use of the tilde (~) as the first character to be replaced by the virtual path to the web application.

You can have images for pressed and mouseover effects as well as the normal image. The names of the image files
determine their purpose. Define the name of the normal image. For example, “myimage.gif”. Create the pressed version
and give it the same name, with “Pressed” added before the extension. For example, “myimagepressed.gif”. Create the
mouseover version and give it the same name, with “MouseOver” added before the extension. For example,
myimagemouseover.gif.

The TogglelmageUrl property should refer to the normal image. DES will detect the presence of the other two files. If
any are missing, DES continues to use the normal image for that case. Note: Auto detection only works when the URL is
a virtual path to a file. You can manage this capability with the

If you need more control over paths for pressed and mouseover images, you can embed up to 3 URLS into this property
using a pipe (|) delimited list. The order is important: normal | pressed |mouseover. If you want to omit the
pressed image, use: normal | [mouseover. If you want to omit the mouseover image, use: normal | pressed.

e CssClass (string) — The style name applied to the toggle control.

You can define pressed and mouseover styles by using the same style sheet class name plus the text “Pressed” or
“MouseOver”. These styles will merge with the style sheet class defined here. So any properties in the pressed and
mouseover classes will override properties in this, but not the entire style.

If blank, it is not used.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 245 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

To use browser sensitive style sheet class names, start with an ! character. (See “Browser Sensitive Style Sheet Class
Names” in the General Features Guide.)

It defaults to "DES_MenuPopup" which is declared in DES\Appearance\interactive Pages\Menu.css:

-DESMenuPopup
{

white-space:nowrap;
text-align:center;

(]

-DESMenuPopupPressed

color: #00008b; /* darkblue */

“

-DESMenuPopupMouseOver

color: blue;

“

-DESMenuPopup a

.

text-decoration: none;
color : black;

-DESMenuPopupPressed a

{
text-decoration: none;
color: #00008b; /* darkblue */
3
-DESMenuPopupMouseOver a
{

text-decoration: none;
color: blue;

}

-DESMenuPopup img

{
background-color:transparent;
margin-left: Opx;
margin-top: Opx;
margin-bottom:0px;
margin-right:0px;
border: Opt none;

-

-DESMenuPopupPressed img

-

-DESMenuPopupMouseOver img

“

While it contains values ImageAlign.Left and ImageAlign._Right, do not use these. It defaults to
ImageAlign.Top

e TogglelmageAlign (enum ImageAlign) — The vertical position of the image when ToggleType is Toggle. Image.

e MarginLeftAdjustment (Boolean) — When true, add style="margin-left:##px" so the toggle is flush with the textbox
to its left. When False, handle this in your style sheet class.

The actual value of margin-left is defined by
PeterBlum.DES.Globals.WebFormDirector.Browser.ToggleButtonMarginLeftAdjustment.

It defaults to true

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 246 of 309

http://www.peterblum.com/des/support.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.imagealign(vs.71).aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Popup Panel Properties
The properties for the Popup Panel which contains the ContextMenu are in the Popup Panel category of the Properties Editor.

Menu (ContextMenu) — This is the ContextMenu control. It contains numerous properties to configure the

the button on the Menu field.

ASP.NET Representation of Nested Properties

The ASP.NET representation for the nested properties. Here is how to format ASP.NET on a DropDownMenu control
for all of these properties:

<des:DropDownMenu id="DropDownMenul" runat="'server" >
<Menu [various properties]>
</Menu>

</des:DropDownMenu>

UseShadowEffect (Boolean) — When true, Internet Explorer for Windows browsers will use a filter effect to give the
ContextMenu a shadow. It defaults to true.

If you want to remove the feature globally, set this property in Page_Load () on all pages that use DES controls:
[C#]

PeterBlum.DES.Globals.WebFormDirector.Browser.SupportsFilterStyles
[VB]

PeterBlum.DES.Globals._WebFormDirector._.Browser.SupportsFilterStyles = False

false;

WARNING: This is the same property that controls the popup and ContextMenu animation effects. By turning it off, you
remove those other effects too.

HorizPosition (enum PeterBlum.DES.HorizPosition) - Positions the popup panel relative to the toggle control.
The enumerated type has these values:
o0 LeftSidesAlign - Left sides of both controls are flush.
Center - Objects are centered to each other.
RightSidesAl ign - Right sides of both controls are flush. This is the default.
PopupToRight - Left side of the popup is flush with the right side of the toggle.

o O O o

PopupToLeft - Right side of the popup is flush with the left side of the toggle.

HorizPositionOffset (Int16) — Adjusts the horizontal position of the popup by a number of pixels to allow more precise
positioning for HorizPosition. If negative, the popup panel moves left. Positive moves right. Zero does nothing. It
defaults to 0.

VertPosition (enum PeterBlum.DES.VertPosition) — Positions the popup panel relative to the toggle control.
The enumerated type has these values:

o0 PopupBelow - Top of the popup is below the toggle. This is the default.

0 Center - Objects are centered to each other.

0 PopupAbove - Bottom of the popup is above the toggle.

0 TopSidesAlign - Tops of both are flush.

VertPositionOffset (Int16) — Adjusts the vertical position of the popup by a number of pixels to allow more precise
positioning for VertPosition. If negative, the popup panel moves up. Positive moves down. Zero does nothing. It
defaults to 0.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 247 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Popup Behavior Properties

These properties affect how the popup panel pops up and down. They are found in the “Behavior” category of the Properties
Editor.

UsePopupEffect (Boolean) — When true, Internet Explorer users will see the ContextMenu fade in as it pops up and
fade out as it pops down. This effect can be customized. See “Customizing the Popup Effect” in the Date and Time
User’s Guide. It defaults to true.

Note: On pages that are very large, either in bytes or screen real-estate, this feature can cause popups and popdowns to
have a delay. Set this property to false when that is the case.

PopupOnMouseOver (Boolean) — When true, the user can point to the DropDownMenu toggle button. After a short
delay, the ContextMenu will automatically popup. It defaults to False.

The delay is defined in PopupOnMouseOverDelay.

PopupOnMouseOverDelay (integer) - When PopupOnMouseOver is true, this is the time delay between when the
mouse moves over the toggle until it pops up. The value is in milliseconds.

If O, it pops up immediately.

If -1, it uses a global default from DefaultPopupOnMouseOverDelay, which defaults to 500 (.5 seconds). Change this
default in the Visual Effects section of the Global Settings Editor.

It defaults to -1.

OnPopup (string) — Specify JavaScript code that is executed when the control is popping up. It is called just prior to
making the control visible. Use it to transfer data into the popup. It should not include the heading "javascript:". It should
always conclude with a semicolon or end brace as multiple users can append or prefix any code you add with their own

code. It defaults to ""'.

OnPopDown (string) - Specify JavaScript code that is executed when the control is popping down. It is called just prior
to making the control invisible.

IEFixPopupOverList (Boolean) — Internet Explorer for Windows versions 5.0 through 6. have a problem allowing
absolutely positioned objects appearing over ListBox and DropDownL.ists. There is a special hack that uses an IFrame
and filter style sheet to make it appear like its over these controls. This property enables that hack on IE versions 5.5-6.
(IE 5 doesn't support the hack; IE 7 doesn't require the hack.)

The hack is imperfect. It breaks when another IFrame is in the same area of the page. By "breaks", this means the popup
usually looks incorrect including being transparent.

If the problem is affecting the ContextMenu, set the UseShadowEffect property to false on the ContextMenu control.

Turn off the hack to work around this problem. Set this property to false. But you should only do this when the popup
does not overlap any listboxes or dropdownlists. If there is overlap, you have to make a design decision to change your
positioning or avoid using the IFrame.

When true, the hack is used when the browser is Internet Explorer for Windows versions 5.5 through 6.
When False, the hack not used. Choose this when the hack causes visual problems such as a transparent popup.

It defaults to true.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 248 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Behavior Properties

e Visible (Boolean) — Determines if the control is added to the page at runtime or not. When Fal se, it is not added to the
page. It defaults to true.

When false, no HTML is written to the page. If you want to be able to show and hide the control on the client-side, leave
this property set to true so that all of the HTML is generated. Then use the FieldStateController to change the
visibility. See the Interactive Pages User’s Guide for details on the FieldStateController.

e InAJAXUpdate (Boolean) — When using AJAX on this page, set this to true if the control is involved in an AJAX
update. See “Using These Controls with AJAX” in the General Features Guide. It defaults to false.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 249 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Enhanced Buttons

The three buttons in ASP.NET - Button, LinkButton, and ImageButton — have been subclassed in DES to extend them in
many ways. Some of the features are needed by the DES Validation Framework (and are documented in the Validation
User’s Guide). The rest are part of Peter’s Interactive Pages and described here.

Click on any of these topics to jump to them:
¢

Features

® & o o
i)
=
o
e}
@
=
(¢}
"
o
>
m
>
>
QD
>
Q
(9]
o
o8]
S
=
o
>
"

Features
o Use the ConfirmMessage property to display a confirmation message. If the user answers No to the prompt, it will

the page has been edited. When setup, the button is disabled as the page is loaded.

e Use the DisableOnSubmit property to disable the button after the user clicks, to limit the chance of a double
submission.

e Use the MayMoveOnClick property when validation is causing the user to click the button twice before it will submit.
The button is actually moving after the first click because validation is removing its error messages causing the page to
reposition its contents. This property does not require any license.

e When using the DES Validation Framework, validation groups support special tokens to match to all groups (“*”) and
assign group names based on their naming container (“+”). With the SkipPostBackEventsWhenlnvalid property, they
can skip calling your Click and Command event handler methods if validation errors are detected. See the Validation
User’s Guide for details.

o ImageButtons can use separate graphic files to provide mouse pressed and mouseover effects. Use the Multiplelmages
property or specify a pipe delimited list of URLs in the ImageUrl property.

e LinkButtons normally show the contents of their href= attribute, which is javascript code, in the browser’s status bar.
Unless prevented by the browser, DES’s LinkButtons will hide the script from the status bar. If you have a tooltip
assigned, its text is used as a replacement.

The DES buttons are direct subclasses of the native buttons, making it very easy to switch to them.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 250 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Using the Enhanced Buttons

Start by selecting the Button controls from DES instead of the native controls. When in design mode, the toolbox has them in
the Peter’s Data Entry Suite tab. When in ASP.NET Markup, type <des:buttontype> instead of
<asp:buttontype>. When writing code, use the namespace PeterBlum.DES instead of

System_Web.Ul .WebControls.

If you already have a page setup with the native controls, run the Web Application Updater with the option Convert
native controls to their DES equivalents as described in the Installation Guide.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 251 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Adding an Enhanced Button

© © These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. Prepare the page for DES controls. See “Preparing a page for DES controls” in the General Features Guide. It covers
issues like style sheets, AJAX, and localization.

2. If you have button with existing native button controls, convert them to DES controls by run the Web Application
Updater with the option Convert native controls to their DES equivalents as described in the Installation Guide.

3. Add a DES Button, LinkButton, or ImageButton control to the page.

Drag the Button, LinkButton, or ImageButton control from the Toolbox onto your web form. Be sure to select DES’s
control, not the native control. Look in the “Peter’s Data Entry Suite” tab.

Add the control (inside the <form> area):
<des:Button id="[YourControllID]" runat="server" />
<des:LinkButton id="[YourControllID]" runat="server" />

<des:ImageButton id="[YourControllD]" runat="server"™ />

o Identify the control which you will add the Button, LinkButton, or ImageButton control to its Controls collection.
Like all ASP.NET controls, the Button can be added to any control that supports child controls, like Panel, User
Control, or TableCell. If you want to add it directly to the Page, first add a PlaceHolder at the desired location and
use the PlaceHolder.

e Create an instance of the Button, LinkButton, or ImageButton control class. The constructor takes no parameters.
e Assign the ID property.

e Add the Button control to the Controls collection.

In this example, the Button is created with an ID of “Buttonl”. It is added to PlaceHolder1.

[C#]

PeterBlum.DES.Web.WebControls.Button vButton =
new PeterBlum._DES.Web.WebControls.Button();

vButton.ID = "Buttonl'';

PlaceHolderl_Controls.Add(vButton);

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add a using clause to that namespace on your
form.

[VB]

Dim vButton As PeterBlum_.DES.Web.WebControls.Button = _
New PeterBlum.DES.Web.WebControls.Button()

vButton.ID = "Buttonl™

PlaceHolderl.Controls.Add(vButton)

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add an Imports clause to that namespace on
your form.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 252 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Guidelines for setting properties
e Design mode users can use the Properties Editor or the Expanded Properties Editor. (See “Expanded Properties
Editor” in the General Features Guide.) The SmartTag ™ also offers some of the most important properties.

e Text entry users should add the properties into the <des:ControlClass> tag in this format:
propertyname="value"

e When setting a property programmatically, have a reference to the control’s object and set the property according to
your language’s rules.

4. Set the properties associated with the Button, LinkButton, or ImageButton. See “Properties on Enhanced Buttons”.

5. If you want a confirmation message, set it in the ConfirmMessage property.

6. If you want to disable this button on submit, set DisableOnSubmit to true.

7. If you are using the ChangeMonitor, review the setting of ChangeMonitorEnables. By default, it enables the button
after a change only when CausesValidation is true.

8. If you are using validation, set the desired validation group in the Group property. If this button should not validate, set
CausesValidation to False. If the button may move due to a validation error showing or hiding, set
MayMoveOnClick to true.

9. Here are some other considerations:

e Ifyou are using an AJAX system to update this control, set the INAJAXUpdate property to true. Also make sure
the PageManager control or AJAXManager object has been setup for AJAX. See “Using these Controls With
AJAX” in the General Features Guide. Failure to follow these directions can result in incorrect behavior and
javascript errors.

e If you encounter errors, see the “Troubleshooting” section for extensive topics based on several years of tech
support’s experience with customers.

e See also “Additional Topics for Using These Controls”.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 253 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Properties on Enhanced Buttons

These controls are subclassed from the native ASP.NET buttons. This section describes properties introduced or important to
DES. For the rest, see: System_Web.Ul .WebControls.Button,

® & o o
<
=N
o)
2
5
=]
i)
=
o
el
()
=3
(9]
"

Behavior Properties

o ConfirmMessage (string) — Displays a confirmation message when the button is clicked. It uses the JavaScript function
confirm() which shows the text of this property and offers OK and Cancel buttons. (You cannot customize the title or
buttons.) When the user clicks OK, the page will submit. If they click Cancel, it will not.

When using the DES Validation Framework on this page, it has its own confirmation message in

ChangeMonitorUsesConfirm property.

e ConfirmMessageLookuplD (string) — Gets the value for ConfirmMessage through the String Lookup System. (See
“String Lookup System” in the General Features Guide.) The LookuplD and its value should be defined within the
String Group of ConfirmMessages. If no match is found OR this is blank, ConfirmMessage will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookuplD and associated textual value in your data source (resource, database, etc). Assign the same
LookuplD to this property.

It defaults to """

e DisableOnSubmit (Boolean) — When true, the control will be disabled after the page submits. If an AJAX callback is
used, it disables and re-enables when the callback is completed.

It defaults to False.

o MayMoveOnClick (Boolean) — If the button requires an extra click to submit the page, its because it jumped as the user
clicks on it. Set this to true to avoid that extra click.

This solves the following problem:

When the user edits a control and immediately clicks on the button, the onchange event of the control fires, running
validation. If validation removes error message and the ValidationSummary, the button may jump. This happens before
the button's onclick event, preventing that onclick event to run because the mouse button is no longer on the button.

When true, the feature is enabled.
It defaults to False.

¢ InAJAXUpdate (Boolean) — When using AJAX on this page, set this to true if the control is involved in an AJAX
update. See “Using These Controls with AJAX” in the General Features Guide. It defaults to false.

e Visible (Boolean) —- When false, no HTML is output. This control is entirely unused. It defaults to true.
Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 254 of 309

http://www.peterblum.com/des/support.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.button.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.linkbutton.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.imagebutton.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

ChangeMonitor Properties

ChangeMonitorEnables (enum PeterBlum.DES.Web.WebControls.ChangeMonitorEnablesSubmitControl) —
Determines if the button switches its state between disabled and enabled. When enabled, the button is disabled as the
page is loaded. After the first edit, it becomes enabled.

The enumerated type PeterBlum.DES.Web.WebControls.ChangeMonitorEnablesSubmitControl has
these values:

0 No - The button will not change its enable state.
0 Yes - The button will change its enabled state.

0 CausesValidationlsTrue - When the button's CausesValidation property is true, it will change its
enabled state.

0 CausesValidationlsFalse - When the button's CausesValidation property is False, it will change its
enabled state.

It defaults to ChangeMonitorEnablesSubmitControl .CausesValidationlsTrue.

Note: ImageButtons normally do not have a visual appearance for disabled. DES’s ImageButtons change their
appearance by changing the opacity of the button when the state is changed by the ChangeMonitor.

ChangeMonitorGroups (string) — When using the ChangeMonitor, the group name(s) defined here is marked changed
when the button is edited.

The button’s Group property is used by the ChangeMonitor unless ChangeMonitor.UseValidationGroups is false.
(ChangeMonitor is accessed programmatically through PeterBlum.DES.Globals.WebFormDirector and in the
PageManager control.)

Unless the Group property does not specify the desired group, you can leave this blank.

The ChangeMonitor is enabled when ChangeMonitor.Enabled to True or the global setting
DefaultChangeMonitorEnabled is True in the Global Settings Editor.

The value of " is a valid group name.

For a list of group names, use the pipe character as a delimiter. For example: "GroupNamel|GroupName2". If one of the
groups has the name "", start this string with the pipe character: "|GroupName2".

Use "*" to indicate all groups apply.
It defaults to """

ChangeMonitorUsesConfirm (enum PeterBlum.DES.Web.WebControls.ChangeMonitorUsesConfirm) — When the
button uses a confirmation message from its ConfirmMessage property, it normally displays the message on any click.
When using the ChangeMonitor, you can make it display based on the changed state of the page. Use the
ChangeMonitorUsesConfirm property on the button.

The enumerated type PeterBlum.DES.Web.WebControls.ChangeMonitorUsesConfirm has these values:
o0 No - ChangeMonitor does not affect the confirmation message.
o Changed - Only show the confirmation message if changes were made.
o0 NotChanged - Only show the confirm message if NO changes were made.

It defaults to ChangeMonitorUsesConfirm._No.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 255 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Validation Properties

Group (string) — Only used by the DES Validation Framework. Group determines which validators are invoked when
this button is clicked. Those that match the value in this will be run.

The ValidationGroup property, inherited from the base class, also works the same way. If you assign both, Group
overrides ValidationGroup.

Group names are blank by default. When left blank, this runs all validators whose Group property is also blank.
You can also use the string "*" to run every validator on the page.

When the button is shown on multiple rows (naming containers) of a GridView, DataGrid or Repeater, you can make
each row have a unique group name by adding a plus (+) character as the first character of the group name.

Note: The pipe character (|) feature is not supported to allow a delimited list of groups. The delimited list feature is only
supported on Validators and ValidationSummary controls.

Just be sure to use an identical name in the validators associated with this button.

It defaults to """

CausesValidation (string) — Determines if the button fires validators. When true it does.

It defaults to true.

It fires validators first on the client-side. Then again on the server side immediately before calling your Click or
Command event handler method. You should always set up server side validation as follows:

DES Validation Framework

You can have the button never call your Click or Command event handler by setting
SkipPostBackEventsWhenlnvalid property to TrueFalseDefault. True or use the global setting
ButtonsSkipPostBackEventsWhenlnvalid in the “Other Validation Properties” topic of the Global Settings Editor.

Otherwise, test PeterBlum.DES.Globals.WebFormDirector.IsValid is true before saving or otherwise using the data
from the page.

Native Validation Framework

Test Page.IsValid is true before saving or otherwise using the data from the page.

SkipPostBackEventsWhenlnvalid (enum PeterBlum.DES. TrueFalseDefault) — Determines if the button fires its server-
side Click and Command events when there are validation errors detected.

Only applies to buttons that have CausesValidation = true.
The enumerated type PeterBlum.DES. TrueFalseDefault has these values:

0 True - When CausesValidation is true, the Click and Command events are fired only when IsValid is
true. When CausesValidation=Fal se, the events always fire.

0 False - The Click and Command events are always fired on postback.

o0 Default - Determine the value from the global setting ButtonsSkipPostBackEventsWhenlnvalid, which
defaults to true. It is set in the “Other Validation Properties” topic of the Global Settings Editor.

It defaults to TrueFalseDefault.Defaul t.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 256 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Hint and ToolTip Properties
License Note: This feature requires a license for the Peter’s Interactive Pages.

The Properties Editor shows these properties in the “Hint” category for hints and “Appearance” for ToolTips.

Note: The terms “Hint™ and “ToolTip” both describe ways to provide documentation to the user. A Hint displays the
message when focus enters the field and is best for data entry controls. A ToolTip displays the message when the mouse
points to the control. It can be used on almost any type of control.

Hint (string) — When using the Interactive Hints system, this is the text of the hint.

When blank, if the TextBox is using its ToolTip property, the ToolTip is used as the text of the hint unless you set the
HintManager.Tool TipsAsHints property to Fal se.

HTML tags are permitted. ENTER and LINEFEED characters are not. Use the token “{NEWLINE}” where you need a
linefeed.

When the hint is shown in the browser's status bar, HTML tags will automatically be stripped.
It defaults to """,

HintLookuplD (string) — Gets the value for Hint through the String Lookup System. (See “The String Lookup System”
in the General Features Guide.) The LookuplID and its value should be defined within the String Group of Hint. If no
match is found OR this is blank, Hint will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookuplD and associated textual value in your data source (resource, database, etc). Assign the same
LookuplD to this property.

It defaults to "".

HintHelp (string) — When the Hint uses a PopupView, this provides data for use by the Help Button and other features
on the PopupView. Its use depends on the PopupView.HelpBehavior property. (The PopupView is determined by the
HintFormatter with its PopupViewName property.)

The PopupView has an optional Help button. When setup, the user can click it to bring up additional information, such
as a new page of help text.

Here is how to use the HintHelp based on PopupView.HelpBehavior:
0 None - Do not show a Help Button. The HintHelp property is not used.

0 ButtonAppends - Add the text from HintHelp after the existing message. Use
PopupView.AppendHelpSeparator to separate the two parts. When clicked, the Help button disappears and
the message box is redrawn.

0 ButtonReplaces - Replace the text in the message with the HintHelp. When clicked, the Help button
disappears and the message box is redrawn.

o Title - The text appears in the header as the title. It replaces the PopupView.HeaderText. There is no Help
Button. If HintHelp is blank, PopupView.HeaderText is used.

0 Hyperlink - Provide a Hyperlink. The Help Info text will appear in the "{0}" token of
PopupView.HyperlinkUrlForHelpButton.

For example, the HyperlinkUrIForHelpButton property may be "{0}" and this property is the complete URL
"/helpfiles/helptopic1000.aspx".

Another example uses the token for just a querystring parameter, like this: HyperlinkUrlForHelpButton =
"/gethelp.aspx?topicid={0}" and this property contains the number of the ID.

0 HyperlinkNewWindow - Provide a Hyperlink that opens a new window. The HintHelp text will appear in
the “{0}” token of PopupView.HyperlinkUrlForHelpButton.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 257 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

0 ButtonRunsScript - Runs the script supplied in PopupView.ScriptForHelpButton. The HintHelp text
will replace the token “{0}” in that script.

This defaults to ™.

e HintHelpLookuplD (string) — Gets the value for HintHelp through the String Lookup System. (See “The String
Lookup System” in the General Features Guide.) The LookuplD and its value should be defined within the String
Group of Hint. If no match is found OR this is blank, HintHelp will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookuplD and associated textual value in your data source (resource, database, etc). Assign the same
LookuplD to this property.

It defaults to "".

e SharedHintFormatterName (string) — Specify the name of the desired HintFormatter object found in
HintManager.SharedHintFormatters. (HintManager is accessed programmatically through
PeterBlum.DES.Globals.WebFormDirector and in the PageManager control.) Alternatively, specify the name of a
PopupView defined in the “PopupView definitions used by HintFormatters” of the Global Settings Editor.

The PeterBlum.DES.Web.WebControls.HintFormatter class describes how the hint text will be displayed.
It provides its name, display mode - on the page or in a PopupView, if it’s also in the tooltip and/or status bar, and more.

The HintManager.SharedHintFormatters property defines various ways to display a hint with
PeterBlum.DES.Web.WebControls.HintFormatter objects. It lets you share a HintFormatter definition
amongst controls on this page. It not only makes changes to the HintFormatter quick, but it also reduces the JavaScript
output. If you want to create a HintFormatter specific to this control, set SharedHintFormatterName to """ and edit the
properties of LocalHintFormatter (see below).

If you specify the name of a PopupView and there is a definition with that name, a HintFormatter is automatically added
to HintManager.SharedHintFormatters with its name matching the name of the PopupView. This is an easy way to
work with PopupViews without the extra step of setting up HintFormatters. The HintFormatter defined will also show
the hint as a tooltip but it will not show the hint in the status bar. If you need more control over the HintFormatter’s
properties, you must create the HintFormatter yourself.

See “Interactive Hints” for details.

Use the token "{DEFAULT?}" to get the name from HintManager.DefaultSharedHintFormatterName.
It defaults to “{DEFAULT}”.

e LocalHintFormatter (PeterBlum.DES.Web.WebControls.HintFormatter) — When none of the HintFormatter objects
defined in HintManager.SharedHintFormatters is appropriate, use this property. (HintManager is accessed
programmatically through PeterBlum.DES.Globals.WebFormDirector and in the PageManager control.)

The PeterBlum.DES.Web_.WebControls.HintFormatter class describes how the hint text will be displayed.
It provides its display mode - on the page or in a PopupView, if it’s also in the tooltip and/or status bar, and more. See
the “Interactive Hints” section of the Interactive Pages User’s Guide for directions on using the
PeterBlum_.DES._Web._WebControls_HintFormatter class.

You must set SharedHintFormatterName to """ for this to be used.

e ToolTip (string) — When assigned, a tooltip with this text is shown when the user points to the textbox. If you are using
the Hint feature, it can be used as the hint when the Hint property is ""'. When using the “Enhanced ToolTips” feature,
the browser’s tooltip will be replaced by a PopupView.

PopupView definition is used. Specify the name from the PopupView definition or use the token “{DEFAULT}” to
select the name from the global setting DefaultTool TipPopupViewName, which is set with the Global Settings
Editor.

A PopupView definition describes the name, style sheets, images, behaviors, and size of a PopupView. Use the Global
Settings Editor to create and edit these PopupView definitions in the “PopupView definitions used by the
HintManager” section.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 258 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Tooltips are only converted to PopupViews when HintManager.EnableTool TipsUsePopupViews is True.

(HintManager is accessed programmatically through PeterBlum.DES.Globals.WebFormDirector and in the
PageManager control.)

Here are the predefined values: LtYel low-Small, LtYel low-Medium, LtYellow-Large, ToolTip-Small,
ToolTip-Medium, and Tool Tip-Large. All of these are light yellow. Their widths vary from 200px to 600pX.
Those named “ToolTip” have the callout feature disabled. Those named “LtYellow” have the callout feature enabled.

It defaults to “{DEFAULTY}".

Note: When the name is unknown, it also uses the factory default. This allows the software to operate even if a
PopupView definition is deleted or renamed.

Note: When the HintManager.ToolTipsAsHints feature is enabled, anything other than ““** or “{DEFAULT}”” assigned to
ToolTipUsesPopupViewName will prevent the ToolTip text from being assigned as a Hint. You must explicitly assign the
Hint text if you want the tooltip and hint to share the same text.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 259 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Appearance Properties

Most of the properties that provide the appearance of the buttons is documented here:
System.Web.Ul .WebControls.Button, System.Web .Ul .WebControls.LinkButton, and

The Properties Editor shows these properties in the “Appearance” category.

e ImageUrl (string) — ImageButton only. The Url to the image file. No initial image is supplied, so always assign it.

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined as
you set up the web site.

Supports the use of the tilde (~) as the first character to be replaced by the virtual path to the web application.

License Note: Requires a license for Peter's Interactive Pages.

You can have images for pressed and mouseover effects as well as the normal image. The names of the image files
determine their purpose. Define the name of the normal image. For example, “myimage.gif”. Create the pressed version
and give it the same name, with “Pressed” added before the extension. For example, “myimagepressed.gif”. Create the
mouseover version and give it the same name, with “MouseOver” added before the extension. For example,
myimagemouseover.gif.

The ImageUr| property should refer to the normal image. Set Multiplelmages to true and DES will detect the
presence of the other two files. If any are missing, DES continues to use the normal image for that case. Note: Auto
detection only works when the URL is a virtual path to a file. You can manage this capability with the

If you need more control over paths for pressed and mouseover images, you can embed up to 3 URLSs into this property
using a pipe (]) delimited list. The order is important: normal | pressed | mouseover. If you want to omit the
pressed image, use: normal | [mouseover. If you want to omit the mouseover image, use: normal |pressed.

e WhenDisabledImageUrl (string) — ImageButton only. The Url to the image file shown when the button is disabled. No
initial image is supplied, so always assign it.

License Note: This property requires a license for Peter's Interactive Pages.

e Multiplelmages (boolean) — ImageButton only. When true, you have images for pressed and mouseover effects. The
ImageUrl points to the normal graphic. Pressed and MouseOver are files in the same folder with the "Pressed" and
"MouseOver" inserted in name, just before the file extension.

The code will detect the presence of these files. If neither are found, it is not used. If one is found, it is used and the other
is not. So it is safe to set this to true all of the time, except for the extra overhead of time used.

override this behavior.

When False, it does not look for multiple images. However, the ImageUrl can override this by having a pipe delimited
list of URLs in this format: Normal | Pressed | MouseOver.

When true, it looks for multiple images.
It defaults to False.
License Note: This property requires a license for Peter's Interactive Pages.

e WhenDisabledCssClass (string) —The style sheet class used when the button is disabled. When unassigned, it is not
used. It defaults to """

Note: FireFox does not support this for LinkButtons. It does not have a disabled mode for <a> tags.

License Note: This property requires a license for Peter's Interactive Pages.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 260 of 309

http://www.peterblum.com/des/support.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.button_methods.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.linkbutton_methods.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.imagebutton_methods.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Programmatically Adding These Features to Non-DES Buttons

You can add some of these features to non-DES buttons in two ways, through the NativeControlExtender or through writing
code. This section shows how to write code to update non-DES buttons.

The features supported here are the ConfirmMessage, DisableOnSubmit, MayMoveOnClick, ChangeMonitor, and DES

There are three steps to programmatically connecting these features to your submit control.

1. Create a PeterBlum.DES.SubmitBehavior object. The constructor takes a reference to your control. See
“Constructors”.

3. Pass the object to
PeterBlum.DES._Globals._WebFormDirector.SubmitPageManager.RegisterSubmitControl ().

Adds DisableOnSubmit and validation group “groupl” to Buttonl.
[C#]

PeterBlum.DES.SubmitBehavior vSubmitBehavior =

new PeterBlum._DES.SubmitBehavior(Buttonl);
vSubmitBehavior.DisableOnSubmit = true;
vSubmitBehavior.Group = "groupl';
PeterBlum.DES.Globals._WebFormDirector.SubmitPageManager .RegisterSubmitControl (vSubmitB
ehavior);

[VB]
Dim vSubmitBehavior As PeterBlum.DES.SubmitBehavior = _

New PeterBlum.DES.SubmitBehavior(Buttonl)
vSubmitBehavior.DisableOnSubmit = True
vSubmitBehavior.Group = "‘groupl™
PeterBlum.DES.Globals._WebFormDirector.SubmitPageManager.RegisterSubmitControl (vSubmitB
ehavior)

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 261 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

The PeterBlum.DES.SubmitBehavior Class

Properties

SubmitControl (System.Web.Ul.WebControl.Control) — The control that is getting the additional functionality. It is
always assigned the constructor of this class.

Group (string) — Only used by the DES Validation Framework. Group determines which validators are invoked when
this button is clicked. Those that match the value in this will be run.

Group names are blank by default. When left blank, this runs all validators whose Group property is also blank.
You can also use the string "*" to run every validator on the page.

When the button is shown on multiple rows (naming containers) of a GridView, DataGrid or Repeater, you can make
each row have a unique group name by adding a plus (+) character as the first character of the group name. (This is
supported for multiple group names with "+groupname|+groupname2".)

Just be sure to use an identical name in the validators associated with this button.
It defaults to "".

CausesValidation (string) — Determines if the button fires DES Framework Validators on the client side. When true it
does.

It defaults to true.

It only validators on the client-side. You still must set up server side validation in your control’s post back event handler
method like this:
[C#]

PeterBlum.DES.Globals._WebFormDirector.Validate("'validation group name');
if (PeterBlum.DES.Globals.WebFormDirector._lsValid)

{

}
[VB]

PeterBlum.DES.Globals.WebFormDirector.Validate(*'validation group name')
IT PeterBlum.DES.Globals.WebFormDirector.IsValid Then

" save or use the page data here
End If

// save or use the page data here

If you have no validation group, you can pass " or call Val idate() without any parameter.

ConfirmMessage (string) — Requires a license covering the Interactive Pages module. Displays a confirmation message
when the button is clicked. It uses the JavaScript function confirm() which shows the text of this property and offers
OK and Cancel buttons. (You cannot customize the title or buttons.) When the user clicks OK, the page will submit. If
they click Cancel, it will not.

When using the DES Validation Framework on this page, it has its own confirmation message in

ChangeMonitorUsesConfirm property.

DisableOnSubmit (Boolean) — Requires a license covering the Interactive Pages module. When true, the control will
be disabled after the page submits. If an AJAX callback is used, it disables and re-enables when the callback is
completed. To disable, DES sets the disabled property to true in the HTML element for the Submit control. If that
element is an <input type="image"> or , it changes the opacity of the control to dim it.

It defaults to False.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 262 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

MayMoveOnClick (Boolean) — If the button requires an extra click to submit the page, it’s because it jumped as the user
clicks on it. Set this to true to avoid that extra click.

This solves the following problem:

When the user edits a control and immediately clicks on the button, the onchange event of the control fires, running
validation. If validation removes error message and the ValidationSummary, the button may jump. This happens before
the button's onclick event, preventing that onclick event to run because the mouse button is no longer on the button.

When true, the feature is enabled.
It defaults to False.

ChangeMonitorEnables (enum PeterBlum.DES.Web.WebControls.ChangeMonitorEnablesSubmitControl) — Requires
a license covering the Interactive Pages module. Determines if the button switches its state between disabled and
enabled. When enabled, the button is disabled as the page is loaded. After the first edit, it becomes enabled.

The enumerated type PeterBlum.DES.Web.WebControls.ChangeMonitorEnablesSubmitControl has
these values:

0 No - The button will not change its enable state.
0 Yes - The button will change its enabled state.

0 CausesValidationlsTrue - When the button's CausesValidation property is true, it will change its
enabled state.

0 CausesValidationlsFalse - When the button's CausesValidation property is false, it will change its
enabled state.

It defaults to ChangeMonitorEnablesSubmitControl .CausesValidationlsTrue.

Note: ImageButtons normally do not have a visual appearance for disabled. DES’s ImageButtons change their
appearance by changing the opacity of the button when the state is changed by the ChangeMonitor.

ChangeMonitorUsesConfirm (enum PeterBlum.DES.Web.WebControls.ChangeMonitorUsesConfirm) — Requires a
license covering the Interactive Pages module. When the button uses a confirmation message from its ConfirmMessage
property, it normally displays the message on any click. When using the ChangeMonitor, you can make it display based
on the changed state of the page. Use the ChangeMonitorUsesConfirm property on the button.

The enumerated type PeterBlum.DES_Web_WebControls.ChangeMonitorUsesConfirm has these values:
0 No - ChangeMonitor does not affect the confirmation message.
0 Changed - Only show the confirmation message if changes were made.
o0 NotChanged - Only show the confirm message if NO changes were made.

It defaults to ChangeMonitorUsesConfirm.No.

INAJAXUpdate (Boolean) — When using AJAX on this page, set this to true if the control is involved in an AJAX
update. See “Using These Controls with AJAX” in the General Features Guide. It defaults to false.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 263 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Constructors
The following constructors have parameters that match various properties shown above.

[C#]
SubmitBehavior(Control pSubmitControl)
SubmitBehavior(Control pSubmitControl, string pValidationGroup)

SubmitBehavior(Control pSubmitControl, string pValidationGroup,
string pConfirmMessage)

[VB]
SubmitBehavior(ByVal pSubmitControl As Control)

SubmitBehavior(ByVval pSubmitControl As Control, _
ByvVal pValidationGroup As String)

SubmitBehavior(ByVal pSubmitControl As Control, _
Byval pValidationGroup As String, _
ByVal pConfirmMessage As String)

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 264 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

ChangeMonitor

The ChangeMonitor watches for edits in the form and changes the appearance of buttons and other fields upon the first
detected edit.

The classic case is to have a disabled OK button that gets enabled as you start typing. Another case is to show a message like
“This form has changed” in a label. Both of these cases are handled.

DES’s enhanced buttons are already capable of showing a confirmation message. With the ChangeMonitor in use, that
message can be shown based on whether or not the user has edited the form.

Click on any of these topics to jump to them:

¢ Features

® The ChangeMonitor Property

® Changing the State of Buttons

® Making Data Entry Controls Notify Changes

® Using the FieldStateController

® Using your own JavaScript Code

® Validation Group and ChangeMonitor Groups

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 265 of 309

http://www.peterblum.com/des/support.aspx�
http://learningdes.peterblum.com/InteractivePages/Menu.aspx?Topic=ChangeMonitor�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Features

Watches for the first edit made by the user. Prior to that, it establishes an initial state of selected buttons and other
controls. Buttons are usually disabled. After the edit, that state is changed to communicate to the user that an edit has
occurred.

Note: It does not know the original value of controls. So if the user undoes their edit, the state does not revert back.

The state of the ChangeMonitor is preserved through postbacks and callbacks. So once the page is edited and the user
posts back, as the page is redrawn it still knows that it has been edited and sets buttons and other fields accordingly. Yet,
if the page is posted back and is found to be entirely valid, you can have it draw the page again as if there were no edits.
This helps when the user is entering multiple records with one page.

DES’s Enhanced Buttons automatically respond to the ChangeMonitor.

DES’s data entry controls (textboxes, MultiSegmentDataEntry, Calendar, etc) automatically notify the ChangeMonitor
of changes. While most controls signal that they are changed with their DHTML onchange or onclick events, you can
have them signal a change as the user makes an edit using the keyboard.

Any data entry control with an attached validator (from the DES Validation Framework) automatically notifies the
ChangeMonitor of changes.

All other data entry controls can notify the ChangeMonitor simply by assigning the NativeControlExtender to them.
A reset button (<input type="reset” />)reverts buttons controls to their unedited appearance.

When using different Validation Groups, the page is usually separated into segments with its own buttons.
ChangeMonitor follows the Validation Groups. It will only enable the button associated with the validation group that
was changed. Controls that do not have a way to define a Validation Group have been given a ChangeMonitorGroup
property where a group name can be defined.

You can define an alternative grouping to Validation Groups. For example, while you have several Validation Groups on
the page, you want all buttons to be enabled.

You can change the state of any other control by using the FieldStateController with the ChangeMonitorCondition class
in its Condition property. It will update the other control as the ChangeMonitor updates the state of buttons.

The ChangeMonitor can call your own JavaScript code so you can take other actions as changes are made.

DES Buttons setup to show a confirmation message can elect to show that confirmation message based on the state of the
page: edited or not.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 266 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Using the ChangeMonitor

There are several parts to the ChangeMonitor;
e The ChangeMonitor property enables the feature and defines its general operation.

e DES Buttons are aware of the ChangeMonitor. Their ChangeMonitorEnables property determines if they respond
to the ChangeMonitor.

e Data entry controls must notify the ChangeMonitor that they have changed.

e Other controls on the page can respond to the ChangeMonitor through the FieldStateController or a call to your own
JavaScript code.

Click on any of these topics to jump to them:

4 Changing the State of Buttons

¢ Making Data Entry Controls Notify Changes

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 267 of 309

http://www.peterblum.com/des/support.aspx�
http://learningdes.peterblum.com/InteractivePages/Menu.aspx?Topic=ChangeMonitor�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

The ChangeMonitor Property

ChangeMonitor and defines its general operation.

When ChangeMonitor.Enabled is TrueFalseDefault.True, it is enabled. Immediately, DES Buttons will disable
themselves when their CausesValidation property is true, until the first change is made that matches the Validation Group
in their Group property. If all you want is to change the state of buttons and your Validation Groups connect to the desired
buttons, there is nothing else you need to do!

ChangeMonitor.Enabled can be set globally using the DefaultChangeMonitorEnabled property in the “ChangeMonitor
Defaults” topic of the Global Settings Editor.

By default, the ChangeMonitor will not detect an edit until the data entry control would notify a validator. For textboxes,
lists, and dropdownlists, that happens on the DHTML onchange event. For radiobuttons and checkboxes, that happens on the
onclick event. When using a textbox, it may feel more natural for the first character typed to notify the ChangeMonitor of
changes. To support this, set MonitorKeystrokes to TrueFalseDefault.True or the global
DefaultChangeMonitor_MonitorKeystrokes to true in the Global Settings Editor.

The ChangeMonitor preserves its state on a postback. This works well if the user submits the page and your code redraws the
same page showing validation errors or requesting additional information. The idea is that a series of postback is still part of
the same edit process so buttons should reflect that. If the page is redrawn but you need the ChangeMonitor to act as if there
have been no edits, there are two ways to handle this:

e Let validation tell the ChangeMonitor that the page is valid. Set ClearIfAllValid to TrueFalseDefault.True
or the global setting DefaultChangeMonitorClearIfAllValid in the Global Settings Editor.

e Call the method ClearChanged() or ClearChangedOnAl 1Groups() in your server side code. See

Note: Several additional properties are described in later sections.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 268 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Changing the State of Buttons

The ChangeMonitor notifies DES Buttons when changes occurs. Use the ChangeMonitorEnables property on any DES
Button to switch their state between disabled and enabled. Here are its values:

e No - The button will not change its enable state.
e Yes - The button will change its enabled state.

e CausesValidationlsTrue - When the button's CausesValidation property is true, it will change its enabled
state. This is the default.

e CausesValidationlsFalse - When the button's CausesValidation property is False, it will change its
enabled state.

Note: ImageButtons normally do not have a visual appearance for disabled. DES’s ImageButtons change their appearance
by changing the opacity of the button when the state is changed by the ChangeMonitor.

When the DES button uses a confirmation message from its ConfirmMessage property, it normally displays the message on
any click. When using the ChangeMonitor, you can make it display based on the changed state of the page. Use the
ChangeMonitorUsesConfirm property on the button. Here are its values:

¢ No - ChangeMonitor does not affect the confirmation message.
e Changed - Only show the confirmation message if changes were made.

¢ NotChanged - Only show the confirm message if NO changes were made.

Using server side code

The PeterBlum.DES.Globals.WebFormDirector .ChangeMonitor object has several methods that let you
modify the state of the buttons. They are generally used to clear the state after a postback loads fresh data onto the form. See

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 269 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Making Data Entry Controls Notify Changes

Each data entry control must notify the ChangeMonitor that it has been changed. DES’s data entry controls automatically
notify the ChangeMonitor. This includes the textboxes, MultiSegmentDataEntry, Calendar, MonthYearPicker, and
TimePicker controls.

For any other data entry controls, you have these options:

e When a DES validator is attached, it will detect changes and notify the ChangeMonitor. This even supports many third
party controls. However, it will not set up the control for keyboard changes when ChangeMonitor.MonitorKeystrokes
is in use. For that, you need the next option.

e Assign the NativeControlExtender to them or call the method RegisterForChanges() on the
PeterBlum.DES.Globals.WebFormDirector.ChangeMonitor property. When these are used, the client-side controls
fire their DHTML onchange or onclick events to notify the ChangeMonitor. If the ChangeMonitor.MonitorKeystrokes
property is in use, it will also use the onkeypress event to monitor changes. See below.

e If your data entry control is a third party control that does not otherwise trigger the ChangeMonitor, you can write some
JavaScript code that notifies ChangeMonitor by calling DES_CMonSet().

Using the NativeControlExtender

Here is an example with a native TextBox control:

<asp:TextBox id="TextBox1l" runat='server" />
<des:NativeControlExtender id="NativeControlExtenderl" runat="server"
Control IDToExtend="TextBox1" />

Using the ChangeMonitor.RegisterForChanges() Method

Indicates the control is to be monitored for changes. Its client-side onchange or onclick event will be hooked up so the
ChangeMonitor system is notified of a change. If ChangeMonitor.MonitorKeystrokes is in use, it also sets up the
onkeypress event.

[C#]

void RegisterForChanges(Control pControlToRegister,
string pChangeMonitorGroups)

[VB]

Sub RegisterForChanges(ByVal pControlToRegister As Control,
ByVal pChangeMonitorGroups As String)

Parameters
pControlToRegister
Control to monitor changes.

pChangeMonitorGroups

The empty string (") is a valid group name. If the page is not using groups, use an empty string.
For match to all groups, use "*".
If a group needs to be different based on its naming container, use "+" as the first character of the group name.

For multiple groups, use a pipe delimited list. For example: “Groupl|Group2”.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 270 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Using the FieldStateController

PeterBlum.DES._Web._WebControls.ChangeMonitorCondition object, it will change the state of your control
when the ChangeMonitor detects that the page has been edited.

For example, you want a Label saying “Changes were made. Click Submit to save them” to appear after a change is made.
Here is the ASP.NET Markup for that:

<asp:Label id=""ChangesWereMadeLabel' runat="server'>
Changes were made. Click Submit to save them</asp:Label>
<des:FieldStateController id="FieldStateControllerl"” runat="server"
Control1DToChange=""ChangesWereMadeLabel™™ ConditionFalse-Visible="false" >
<ConditionContainer>
<des:ChangeMonitorCondition ChangeMonitorGroups=""" />
</ConditionContainer>
</des:FieldStateController>

The PeterBlum.DES.Web.WebControls.ChangeMonitorCondition Class
The following list are properties specific to this Condition:

The empty string (") is a valid group name. If the page is not using groups, use an empty string.

For match to all groups, use "*".

If a group needs to be different based on its naming container, use "+" as the first character of the group name.
For multiple groups, use a pipe delimited list. For example: “Groupl|Group2”.

It defaults to """

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 271 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Using your own JavaScript Code

If you want your own JavaScript code to run when the ChangeMonitor detects changes, use the
ChangeMonitor.OnChangeFunctionName property to specify the name of a function that is called by the ChangeMonitor.

Your function must provide these properties in the order shown:

e GroupName (string) - The group that is being set or cleared. A value of " is a valid group. A value of "*" indicates

all groups.

e Change (boolean) - When true, the group has just been changed. When Fal se, the group has been cleared of its
change status.

It does not return a result.

Please position this function above the opening form tag to avoid a javascript error. If you have a Reset button on the page,
support pGroup="*" as reset will clear "*".

ALERT: Many users make the mistake of assigning JavaScript code to this property. This will cause JavaScript errors.
GOOD: “MyFunction”. BAD: “MyFunction();”” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of this property exactly matches the function definition.

Changes the visibility of a control whose ClientID is "TextBox1". ChangeMonitor.OnChangeFunctionName is set to
“MyChangeFunction”.

function MyChangeFunction(pGroup, pChange)

{
it (pChange)
DES_GetByld("'TextBox1'™) .style.visibility = "inherit";
else
DES_GetByld("'TextBox1'™) .style.visibility = "hidden";
}
Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 272 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Validation Group and ChangeMonitor Groups

When you are using validators, you may be using their Validation Groups feature to associate specific buttons with specific
validators. The ChangeMonitor respects this grouping. The ChangeMonitor will change the enabled state of the button whose
validation group property (Group or ValidationGroup) matches the validation group name of the validator.

When using Validation Groups, you need to be aware of this.

e When a control is not managed by a validator, it needs the ChangeMonitor to know the correct validation group it is in.
Assign that group to its ChangeMonitorGroups property. When using the NativeControlExtender,
ChangeMonitorGroups is on that control. When using the ChangeMonitor .RegisterForChanges() method,
ChangeMonitorGroups is a parameter.

e When you want a button to respond to more Validation Group names than it has in its Group or ValidationGroup
properties, set those additional groups in its ChangeMonitorGroups property.

0 To match to all groups, set ChangeMonitorGroups to “*”.
o To match to two or more additional groups, use a pipe delimited list. For example, “Group1|Group2”.

e When you want to entirely ignore Validation Groups, set the ChangeMonitor.UseValidationGroups property to
False.

e When you want to use a different grouping model, set the ChangeMonitor.UseValidationGroups property to False.
Then assign the ChangeMonitorGroups property on each data entry control and button to new group names.

If you are not using Validation Groups, you can still use the ChangeMonitorGroups property to group certain data entry
controls with buttons.

Suppose you have a grid where the user can edit a row, or add a new record in the footer.
Start by entirely focusing on validation. You have two validation groups: row being edited (EditltemTemplate) and row being
inserted (FooterTemplate).

Go through each of these templates and assign the Group property on each Validator and button to one of the two group
names. (Proposed names: "Edit", "Insert")

If you have a ValidationSummary control, give its Group property the value of "*" (for all groups) or "Edit] Insert"
(specifies a list of groups).

Make sure that validation works correctly.

Now let's look at the ChangeMonitor. By default, it groups buttons and edit controls by the names supplied using Validation
Groups. Do you want the ChangeMonitor to work separately for Edit and Insert rows? If so, it is correctly setup. An edit in
each row will only update its own buttons.

If not, ChangeMonitor should have its own grouping, using the ChangeMonitorGroup property on edit controls,
NativeControlExtender (for non-DES edit controls) and buttons.

Set ChangeMonitor.UseValidationGroups to TrueFalseDefaul t.False on either
PeterBlum.DES.Globals.WebFormDirector or the PageManager control.

In both cases, consider setting ChangeMonitor.ClearIfAllValid to TrueFalseDefault.True on either
PeterBlum.DES.Globals.WebFormDirector or the PageManager control.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 273 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Properties of the PeterBlum.DES.Globals.WebFormDirector.ChangeMonitor

The ChangeMonitor property, found on the PageManager control and PeterBlum.DES.Globals.WebFormDirector
property, provides properties that enable and configure the ChangeMonitor feature.

e Enabled (enum PeterBlum.DES.TrueFalseDefault) — Determines if the ChangeMonitor is enabled. When it’s enabled,
controls will automatically start monitoring changes.

The enumerated type PeterBlum.DES . TrueFalseDefault has these values:
0 True - Indicates the ChangeMonitor is enabled.
0 False - Indicates the ChangeMonitor is disabled.

0 Default - Use the value from the global setting DefaultChangeMonitorEnabled to determine if it’s enabled
or not. DefaultChangeMonitorEnabled is set in the Global Settings Editor and defaults to False
(disabled).

It defaults to TrueFalseDefault.Default.

o UseValidationGroups (enum PeterBlum.DES.TrueFalseDefault) — Determines if the Validation Group system provide
group names in addition to group names from the ChangeMonitorGroups property on various controls.

When Controls grouped by validation group do not define the right group for monitoring, set this property to
TrueFalseDefault._False.

Changes are monitored by group names which can come from two sources: the ChangeMonitorGroups and Group
properties on various controls. Validation groups already provide an effective group naming system and are applied
when this is TrueFalseDefault. True. However, controls marked by validation group do not always define the
right group for change monitoring. So use this to turn off validation group names as the source of changes and only use
the ChangeMonitorGroups property on the data entry controls and buttons.

The enumerated type PeterBlum.DES. TrueFalseDefault has these values:

0 True - Indicates validation group names are used in addition to the ChangeMonitorGroups properties. If the
control defines both a value in Group and ChangeMonitorGroups, they are both used.

o0 False - Indicates validation group hames are not used. Only the ChangeMonitorGroups properties are used.

o0 Default - Use the value from the global setting DefaultChangeMonitorUseValidationGroups to determine
if it’s enabled or not. DefaultChangeMonitorUseValidationGroups is set in the Global Settings Editor
and defaults to true (enabled).

It defaults to TrueFalseDefault.Default.

e MonitorKeystrokes (enum PeterBlum.DES.TrueFalseDefault) — Controls that are edited through the keyboard can mark
their change monitor group as changed as soon as the user changes the control.

Most controls tell the change monitor they are changed after an edit is completed, such as using the onclick or onchange
event. Typing can enhance the user experience and enable a button so the user can type ENTER within the field and hit
the button.If the button was disabled while focus is in the textbox, it would not press the button.

The enumerated type PeterBlum.DES. TrueFalseDefault has these values:
0 True - Enables this feature.
o0 False - Disables this feature.

o0 Default - Use the value from the global setting DefaultChangeMonitor_MonitorKeystrokes to determine
if it’s enabled or not. DefaultChangeMonitor_MonitorKeystrokes is set in the Global Settings Editor and
defaults to true (enabled).

It defaults to TrueFalseDefault.Default.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 274 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

ClearlfAllValid (enum PeterBlum.DES.TrueFalseDefault) — Useful if the same page is used for multiple records. When
there are no validation errors after a postback, that is the indication that the change monitor should clear its changed
state.

On a post back, the state of the change monitor is preserved so that groups known as changed retain that state. This helps
with autopostback and normal postbacks where validation errors are detected on the client-side.

While you can manually clear groups with the ClearChanges() and ClearChangesOnAl 1Groups () methods,
this can automatically clear the group just validated if no validation error is found.

When true, if the page was validated using page-level validation, the validation group that was used is used by the
change monitor to clear its own groups. If page-level validation did not occur, the state of the change monitor remains
the same. Page-level validation requires either the CausesValidation property to be true on the submit control or a call
to PeterBlum.DES.Globals.WebFormDirector _Validate().

The enumerated type PeterBlum.DES. TrueFalseDefault has these values:
0 True - Enables this feature.
o0 False - Disables this feature.

o0 Default - Use the value from the global setting DefaultChangeMonitorClearIfAllValid to determine if it’s
enabled or not. DefaultChangeMonitorClearlIfAllValid is set in the Global Settings Editor and defaults to
Tfalse (disabled).

It defaults to TrueFalseDefault.Default.

OnChangeFunctionName (string) — Assign to the name of a JavaScript function that will be called as the change

When "", no function is set up. It defaults to ™"

ALERT: Many users make the mistake of assigning JavaScript code to this property. This will cause JavaScript errors.
GOOD: “MyFunction”. BAD: “MyFunction();”” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of this property exactly matches the function definition.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 275 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

ChangeMonitor Server Side Methods

These methods are found on the PeterBlum.DES.Globals.WebFormDirector.ChangeMonitor object. (If you
are using the PageManager, it also has a ChangeMonitor object with these methods but they should not be used.)

ChangeMonitor.SetChanged() method

Indicates that a group is already changed.

[C#]

void SetChanged(string pGroupName)

[VB]

Sub SetChanged(ByVal pGroupName As String)

Parameters

pGroupName

Specify the ChangeMonitor group name that should be marked as changed.
Use """ when you are not using any groups.

It does not support a pipe delimited group list or “*” for all groups.

ChangeMonitor.SetChangedOnAl IGroups() method

Indicates that all groups are already changed.
[C#]

void SetChangedOnAllGroups()
[VB]

Sub SetChangedOnAllGroups()

ChangeMonitor.ClearChanged() method

Indicates that a group is not changed.

[C#]

void ClearChanged(string pGroupName)

[VB]

Sub ClearChanged(ByVal pGroupName As String)
Parameters

pGroupName

Specify the ChangeMonitor group name that should be marked as unchanged.

Use """ when you are not using any groups.

It does not support a pipe delimited group list or “*” for all groups.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved

Page 276 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

ChangeMonitor.ClearChangedOnAll1Groups() method

Indicates that all groups are already changed.
[C#]

void ClearChangedOnAllGroups()
[VB]

Sub ClearChangedOnAllGroups()

ChangeMonitor.HasChanged() method

Indicates if the specified group is marked as changed. Evaluates a single group name, pipe delimited list of group names, or
"*'" to determine if a group is changed. So long as one group name matches to the known groups changed, it is considered
changed.

[C#]
bool HasChanged(string pGroupName)
[VB]
Function HasChanged(ByVal pGroupName As String) As Boolean
Parameters
pGroupName
Specify the ChangeMonitor group name to be evaluated.
Use """ when you are not using any groups.
Supports a pipe delimited group list and “*” for all groups.
Return value

true when any group requested is changed. fal se when no changes are detected.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 277 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

ChangeMonitor JavaScript Functions

When a control does not use the DHTML onchange event to notify of changes, you can write JavaScript code that is called
by the control’s alternative “on change” functionality. (Most third party controls provide an API that notifies you of a
change.) Your JavaScript will call the DES_CMonSet() function with the ChangeMonitor group name.

function DES_CMonSet(pGroup)

Indicates the specified ChangeMonitor group name has been changed.
Parameters
pGroupName
MUST BE uppercase.
Specify the ChangeMonitor group name to be evaluated.
Use """ when you are not using any groups.

Supports a pipe delimited group list and “*” for all groups.

function DES_CMonClear (pGroup)

Indicates the specified ChangeMonitor group name has not been changed.
Parameters
pGroupName
MUST BE uppercase.
Specify the ChangeMonitor group name to be evaluated.
Use """ when you are not using any groups.

Supports a pipe delimited group list and “*” for all groups.

function DES_CMonlsChanged(pGroup)

Indicates the state of the specified ChangeMonitor group name.
Parameters
pGroupName
MUST BE uppercase.
Specify the ChangeMonitor group name to be evaluated.
Use """ when you are not using any groups.
Supports a pipe delimited group list and “*” for all groups.
Return value

true when any group requested is changed. fal se when no changes are detected.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 278 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Direct Keystrokes to Click Buttons

DES’s TextBoxes and the MultiSegmentDataEntry control offer the EnterSubmitsControllD property, which lets you direct
the ENTER key to click a specific button or control. It’s useful when you have several Submit buttons on the page, each with
their own task.

Additionally, the NativeControlExtender control and
PeterBlum.DES.Globals.WebFormDirector.RegisterKeyClicksControl () let you attach this capability
to any control. This feature has several advantages:

o It allows you to define the keystroke that clicks the button. For example, ESC can hit a “Cancel” button. Only applies to
the RegisterKeyClicksControl()

o Instead of setting it up for individual controls, you can set it up for a group of controls by attaching this to a container
control, like a Panel or Table. The browsers are designed to let the onkeypress event, used here, to “bubble up” until
consumed (which is what the container will do).

The client-side code calls the cl ick() method on the control. This will run the control’s onclick event. For a <input
type="submit"> control, request that it submits the page. Other controls that have a call to ___doPostBack() in their
onclick event will attempt to submit the page too. (They will all validate if the submit control is set up to validate.)

You have the option of moving the focus from the data entry field to the button as a way to provide visual feedback to which
button was clicked.

Click on any of these topics to jump to them:

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 279 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Using the NativeControlExtender

1. Set the ControlIDToExtend to the control that intercepts the keystroke. If several controls need to click the same button
and they are all contained in a tag like a <div>, <p>, or <table>, you can just use the container control’s tag. It will
capture the keystroke for all of its child controls.

The selected controls must have runat=server and an 1D attribute.
2. Determine the control whose click() method will be invoked. Set EnterSubmitsControllD to that control.

There are a lot of controls that support cl ick(), although they vary by browser. In addition to Buttons and
ImageButtons, typical cases are hyperlinks, LinkButtons, checkboxes and radiobuttons. However, browsers don’t all
support the click () method on the same control. Here are the differences:

e Internet Explorer and Opera 7 support it on hyperlinks (and LinkButton) while Mozilla, FireFox, Netscape 7, and
Safari do not.

e All support checkboxes and radiobuttons. However, Mozilla, FireFox, and Netscape 7 always remove the focus from
the current field even if you don’t set this feature up to move the focus (the focus is gone, not moved)

o All support Buttons the same way. This is the best choice for a control to click.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 280 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Using the RegisterKeyClicksControl() Method

1. Determine which data entry controls should use this feature when they have focus. If they are all contained in a tag like a
<div>, <p>, or <table>, you can just use the container control’s tag. It will capture the keystroke for all of its child
controls.

The selected controls must have runat=server and an ID attribute.

2. Determine the keystroke. JavaScript uses numeric values called “keycodes” that often match to the ASCII code table but
not always. ENTER (13), ESC (27), and most characters from SPACE (32) through TILDE (~) (126) are the same.

You can research the keycodes by adding a TextBox with this code:
TextBox1.Attributes.Add("'onkeypress'™, "alert(event.keyCode);'™)
Then type into the textbox to see the keycodes.

3. Determine the control whose click() method will be invoked.

There are a lot of controls that support cl ick(), although they vary by browser. In addition to Buttons and

ImageButtons, typical cases are hyperlinks, LinkButtons, checkboxes and radiobuttons. However, browsers don’t all

support the click () method on the same control. Here are the differences:

e Internet Explorer and Opera 7 support it on hyperlinks (and LinkButton) while Mozilla, FireFox, Netscape 7, and
Safari do not.

o All support checkboxes and radiobuttons. However, Mozilla, FireFox, and Netscape 7 always remove the focus from
the current field even if you don’t set this feature up to move the focus (the focus is gone, not moved)

o All support Buttons the same way. This is the best choice for a control to click.

4. InPage_Load() or a post back event handler, call the
PeterBlum.DES.Globals._WebFormDirector._.RegisterKeyClicksControl () method. See below.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 281 of 309

http://www.peterblum.com/des/support.aspx�
http://www.asciitable.com/�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

PeterBlum.DES.Globals.WebFormDirector.RegisterKeyClicksControl Method

Sets up JavaScript that intercepts a keystroke and fires the click() method of a control. For example, monitor ENTER
keys and fire a Submit button to validate and submit the page.

Call it within Page_Load () or post back event handler methods.
[C#]

public void RegisterKeyClicksControl (Control pControlToMonitor,
Control pControlToClick, int pKeyCode,
bool pSetFocus)

[VB]

Public Sub RegisterKeyClicksControl(ByVal pControlToMonitor As Control,
ByVal pControlToClick As Control, ByVal pKeyCode As Integer,
ByVal pSetFocus As Boolean)

Parameters
pControlToMonitor
The control that will monitor keystrokes. Usually a data entry control or a container control.

Note: The control must have runat=server and an ID attribute. Usually you can use Page.FindControl("ID") to
retrieve the control’s object.

pControlToClick

The control whose client-side cl i ck () method will be fired. Buttons, ImageButtons, LinkButtons, and
HyperLinks are some of the most common controls for this because they fire commands.

Note: The control must have runat=server and an ID attribute. Usually you can use Page.FindControl("ID") to
retrieve the control’s object.

pKeyCode

Keycodes are client-side values returned by the event object's keycode attribute. 13 is ENTER; 27 is ESC. The
user can research other keystrokes by adding a TextBox with this code:

TextBox1l.Attributes_Add("'onkeypress™, "alert(event.keyCode);')
Then type into the textbox to see the keycodes.
pSetFocus

When true, it sets focus to the control (if possible) prior to clicking it. This shows the user what they clicked better
but moves the focus from the current field. When fal se, focus does not move.

A group of textboxes are contained in a Panel called Panell. The panel contains two Buttons, SubmitBtn and CancelBtn.
When ENTER is typed, click SubmitBtn. When ESC is typed, click CancelBtn. Set focus to the button as it clicks.

This code is in Page_Load():
[C#]

PeterBlum.DES.Globals._WebFormDirector.RegisterKeyClicksControl (Panell, SubmitBtn,
13, true);
PeterBlum.DES.Globals.WebFormDirector.RegisterKeyClicksControl(Panell, CancelBtn,
27, true);

[VB]
PeterBlum.DES.Globals._WebFormDirector._RegisterKeyClicksControl(Panell, SubmitBtn,
13, True)

PeterBlum.DES.Globals.WebFormDirector.RegisterKeyClicksControl(Panell, CancelBtn,
27, True)

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 282 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Custom Submit Function
ASP.NET provides the Page - RegisterOnSubmitStatement() method to add code that will run when a submit

control is fired. It has limitations that DES addresses with the
PeterBlum.DES.Globals.WebFormDirector.CustomSubmitFunctionName property addresses.

e Itis connected to the validation process. You determine if you code executes before or after Validation.
e |t can stop the page from submitting by returning false. If it occurs before Validation, it will prevent validation too.
e It works with any control that submits the page and is attached to DES’s Validators.

For example, after validating the page, display an absolutely positioned <div> that tells the user to wait. You would have
already added the <div> to the page and made its style="visibility:hidden;display:none". You add JavaScript to display the
<div> after validation has occurred.

Any submit control that has its CausesValidation property set to true will invoke your function if supplied.

Click on any of these topics to jump to them:

Using The Custom Submit Function
Your JavaScript code should be contained in a function that has a specific parameter list and returns a Boolean value.

Your function should take one parameter, the group name (an uppercase string), which you can use if your code depends on a
group. Your function should return true to continue submitting or false to stop submitting the page.

function MySubmitFnc(pGroup)

{
// do your work

it (continue)
return true;
else
return false;
3

In Page_Load(), set the function name in the
PeterBlum.DES.Globals.WebFormDirector.ValidationManager.CustomSubmitFunctionName property. Determine
whether the function is run before or after validation with the

This code appears in Page_Load():
[C#]

PeterBlum.DES.Globals.WebFormDirector.Val idationManager .CustomSubmitFunctionName
"MySubmitFnc™;

PeterBlum.DES.Globals._WebFormDirector. ValidationManager.SubmitOrder =
PeterBlum.DES.Web.SubmitOrderType.ConfirmValidateCustom;

[VB]

PeterBlum.DES.Globals.WebFormDirector.Val idationManager .CustomSubmitFunctionName

"MySubmitFnc"
PeterBlum.DES.Globals._WebFormDirector.ValidationManager.SubmitOrder = _
PeterBlum.DES.Web.SubmitOrderType.ConfirmVal idateCustom

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 283 of 309

http://www.peterblum.com/des/support.aspx�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuipageclassregisteronsubmitstatementtopic.asp�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Page-Level Properties

The following properties are on the PeterBlum.DES.Globals.WebFormDirector object. You set them in the
Page_Load() method.

e CustomSubmitFunctionName (string) — Use this to add your own JavaScript code into the page submission process.
Any submit control that has its CausesValidation property set to true will invoke your function if supplied.

Your function should take one parameter, the group name (an uppercase string), which you can use if your code depends
on a group. Your function should return true to continue submitting or false to stop submitting the page. This

Note: The group name property will always be uppercase, even when the user entered it with lowercase. Be sure that you
use an uppercase group name when you compare to the parameter.

The custom submit function is part of a group of actions that occur during submission: validation, confirm message and

order of these actions.

When this property is
It defaults to """

, o custom submit function is defined.

ALERT: Many users make the mistake of assigning JavaScript code to this property. This will cause JavaScript errors.
GOOD: “MyFunction”. BAD: “MyFunction();”” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of this property exactly matches the function definition.

function MySubmitFnc(pGroup)
{
// do your work
ifT (continue)
return true;
else
return false;

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 284 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Additional Topics for Using These Controls

This section covers a variety of special cases when using these controls.

Click on any of these topics to jump to them:

| These topics are found in the General Settings Guide:

Using these Controls with AJAX

4 The ViewState and Preserving Properties for PostBack
¢ Establishing Default Localization for the Web Form
4 Using Style Sheets
¢ The String Lookup System
4 The Global Settings Editor
4 Using Server Transfer and Using Alternative HttpHandlers
¢ Using a Redistribution License
4 Browser Support and The TrueBrowser Class
Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 285 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Page Level Properties and Methods

The PeterBlum.DES.Globals.WebFormDirector object contains several properties that affect all controls on the page.
They include setting the Culturelnfo object, getting the Browser details, and enabling JavaScript.

The Page property on PeterBlum.DES.Globals uses the class
PeterBlum.DES.Web._.WebControls._WebFormDirector. When accessed through
PeterBlum.DES.Globals.WebFormDirector, you will have an object that is unique to the current thread. It is really a
companion to the Page object of a web form, hosting details related to DES. Properties set on it will not affect any other
request for a page.

Properties on PeterBlum.DES.Globals.WebFormDirector

You generally assign properties to PeterBlum.DES.Globals.WebFormDirector in your Page_Load() method. Your post
back event handler methods can also assign properties.

to follow. DES uses this value within its data types (PeterBlum.DES .DESTypeConverter classes) as it translates
between strings and values.

e Culturelnfo (System.Globalization.Culturelnfo) — Cultures define date, time, number and text formatting for a program

<%@Page Culture="en-US" [other page properties] %>

You can set it programmatically in your Page_Init() method or in the Application_BeginRequest()
method of Global.asax. Use the .Net Framework method Cul turelnfo.CreateSpecificCulture(). For
example, assigning the US culture looks like this:

PeterBlum.DES.Globals.WebFormDirector._.Culturelnfo =
Culturelnfo.CreateSpecificCulture(“en-US™)

Assign values to PeterBlum.DES.Globals.WebFormDirector.Culturelnfo. Here are some examples:
[C#]

System.Globalization.DateTimeFormatinfo VvDTFI =
PeterBlum.DES.Globals.WebFormDirector.Culturelnfo.DateTimeFormat;

vDTFI .ShortDatePattern = ""MM-dd-yyyy";

VvDTFI .DateSeparator = "-'';

System.Globalization.NumberFormatinfo vNFI =
PeterBlum.DES.Globals.Culturelnfo.NumberFormat;

VNFI .DecimalSeparator = ".";
VNF1 .CurrencySymbol = "€";

[VB]

Dim vDTF1 As System.Globalization.DateTimeFormatinfo = _
PeterBlum.DES.Globals.WebFormDirector.Culturelnfo.DateTimeFormat

vDTFI1 .ShortDatePattern = “MM-dd-yyyy™

vDTFI .DateSeparator = "-"

Dim vNFI As System.Globalization.NumberFormatinfo = _
PeterBlum.DES.Globals.Culturelnfo.NumberFormat

VNFI .DecimalSeparator = ™.
VNFI1_CurrencySymbol = "€"

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 286 of 309

http://www.peterblum.com/des/support.aspx�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemglobalizationcultureinfoclasstopic.asp�
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.currentculture(vs.71).aspx�
http://msdn2.microsoft.com/en-us/library/ydy4x04a(vs.71).aspx�
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.createspecificculture(vs.71).aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

FSCManager — Hosts a list of all FieldStateControllers on the page in its Items property.
TextCounterManager — Hosts a list of TextCounter controls on the page in its Items property.

MenuManager — Hosts a list of Menu controls on the page in its Items property.

Browser (PeterBlum.DES.Web.TrueBrowser) — Detects the actual browser that is requesting the page and configures the
HTML and JavaScript code returned to work with that browser. If the browser doesn’t support the client-side scripting
code for FieldStateControllers, the TrueBrowser.SupportsFieldStateControllers property is False and they are
disabled. See “Browser Support” in the General Features Guide.

JavaScriptEnabled (Boolean) — Determines if the browser really has JavaScript enabled. It automatically detects if
JavaScript is enabled after the first post back for a session. Prior to that first post back, it is true. After that, it is true
when JavaScript is enabled and False when it is not.

When false, the page will be generated as if the browser does not support JavaScript. No controls will output
JavaScript and may draw themselves differently, knowing that a client-side only feature that doesn’t work is
inappropriate to output.

This feature stores its state in the Session collection. If the Session is not working or has been cleared, it will reset to
true and attempt to resolve the JavaScript state on the next post back.

If you do not want this detection feature enabled, set DetectJavaScript to False.

You can set this value directly in Page_Load(). It lets you turn off all of DES’s JavaScript features on demand. For
example, your customers can identify if they use JavaScript on their browser in a configuration screen. It only affects the
current page so set it on each page where needed.

DetectJavaScript (Boolean) — When true, the JavaScriptEnabled property will monitor for JavaScript support. When
false, it will not.

It defaults to the global DefaultDetectJavaScript property, which defaults to true. You set DefaultDetectJavaScript
with the Global Settings Editor. (For details on the Global Settings Editor, see “Global Settings: The Editor and
custom.DES.config File” in the General Features Guide.)

ButtonEffectsManager.EnableButtonlmageEffects (enum PeterBlum.DES.Web.EnableButtonimageEffects) — Many
buttons can show up to 3 images: normal, pressed, and mouseover. By default, these effects are set up based on the
presence of the actual files. However, DES cannot always see the files are present. For example, the URL uses
http://. EnableButtonlmageEffects lets you to specify that the images are present or not.

The enumerated type PeterBlum.DES_Web.EnableButtonlImageEffects has these values:
0 None - Never use image effects.
o0 Always - Always use image effects. Assume that all image files are available
0 Auto - Detect the files, if possible before using them
0 Pressed - Always set up for pressed. Never set up for mouse over
0 MouseOver - Always set up for mouseover. Never set up for pressed
It defaults to EnableButtonlmageEffects.Auto.

PagelsLoadingMsg (string) — The error message to display on the client-side if the user interacts with this control
before it is initialized. It defaults to “Page is loading. Please wait.”.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 287 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Validation Properties
These properties are only used with the DES Validation Framework.

ConfirmMessage (string) — Allows you to show an OK/Cancel message box when the user submits the page, regardless
of if there are any errors found. If they answer OK, submit is continued. With Cancel, it is cancelled. When this is blank,
no alert is shown.

The alert appears based on the group being submitted. It must match ConfirmMessageGroup.
Submit controls whose CausesValidation property is false will not show this messagebox.

The confirm message is part of a group of actions that occur during submission: validation, confirm message and custom

It defaults to the DefaultConfirmMessage property in the Global Settings Editor, which defaults to ™.

ConfirmMessageLookupID (string) — Gets the value for ConfirmMessage through the String Lookup System. (See
“String Lookup System” in the General Features Guide.) The LookuplD and its value should be defined within the
String Group of ConfirmMessages. If no match is found OR this is blank, ConfirmMessage will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookuplD and associated textual value in your data source (resource, database, etc). Assign the same
LookuplID to this property.

It defaults to the DefaultConfirmMessageLookuplID property in the Global Settings Editor, which defaults to """

ConfirmMessageGroup (string) — When using the ConfirmMessage property, use this property to determine which
group shows this message. When ", it will match group names that are blank. If this is "*", it will match all group
names.

It defaults to the DefaultConfirmMessageGroup property in the Global Settings Editor, which defaults to """

ValidationManager.SubmitOrder (enum PeterBlum.DES.Web.SubmitOrderType) — Determines the order of these
three client-side actions when the page is submitted:

o0 Validation of fields associated with submit button’s group

0 Confirm message when the ConfirmMessage property is set up.

0 Custom submit function when the CustomSubmitFunctionName property is set up.
The enumerated type PeterBlum.DES.Web.SubmitOrderType has these values:

0 ConfirmCustomVal idate - Confirm message, Custom submit function, Validate.
ConfirmvVal idateCustom
CustomConfirmVal idate

CustomVal idateConfirm

O O O O

Val idateConfirmCustom
o ValidateCustomConfirm

It defaults to the DefaultSubmitOrder property in the Global Settings Editor, which defaults to
SubmitOrderType.ConfirmCustomVal idate.

Note: When the page posts back to the server, it will once again run validation. Server-side validation is not affected
by this property. It always occurs after all client-side actions.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 288 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

JavaScript Support Functions

This section shows how to communicate with these controls from your own JavaScript.

DES supplies the following client-side functions to any page that includes these controls.

Click on any of these topics to jump to them:

General Utilities

® & & & o o
)
<
D
%)
o}
=
o
c
=
a
=
=
7]
n
=2
o
=
o
2
a
L
g
o
o
=
o
T
=)
o
=
|w)
@
3
o
5
a

General Utilities

function DES GetByld(plID)

Returns the DHTML element associated with the 1D supplied. This is a wrapper around the functions document.all[]
and document.GetElementByld() so that you can get the field using browser independent code.

Parameters
pID

The ClientID property value from the server side control. It is the value written into the §1d= attribute of the HTML

Return value

Returns the field object or null.

var vOtherField = DES GetByld("DateTextBoxl1l");

function DES_ Parselnt(pText)

this, when there is a lead zero, parse Int() believes the number is octal (base 8). Thus, 08 is returned as 10. Dates often
have lead zeros. So call this instead of parselnt(). Internally, it calls parselnt() after stripping off the lead zeroes.

Parameters
pText
The string to convert to an integer.
Return value

An integer. If the text represented a decimal value, it will return the integer portion. If it cannot be converted, it returns NaN

var vNumber = DES Parselnt(''03™); // returns 3
it (YisNaN(vNumber))
// do something with vNumber

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 289 of 309

http://www.peterblum.com/des/support.aspx�
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Functions:parseInt�
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Functions:isNaN�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

function DES_SetFocus(plD)

Sets focus to the HTML element whose 1D is passed in. It will not set focus if the element is not present or it’s illegal to set
focus (such as its invisible). It will also select the contents of a textbox, if the ID is to a textbox.

It calls your custom focus function defined in PeterBlum.DES.Globals.WebFormDirector.SetFocusFunctionName to
assist it to setting focus. (See “Properties on PeterBlum.DES.Globals.WebFormDirector” in the General Features Guide.)

Parameters
pID

The ClientID property value from the server side control. It is the value written into the §1d= attribute of the HTML

Return value

Returns the field object or null.

DES_SetFocus("DateTextBox1");

function DES Round(pValue, pMode, pDecimalPlaces)

Rounds a decimal value in several ways.
Parameters
pValue
The initial decimal value.
pMode
An integer representing one of the rounding modes:
0 = Truncate — Drop the decimals after pDecimalPlaces
1 = Currency — Round to the nearest even number
2 = Point5 — Round to the next number if .5 or higher; round down otherwise

3 = Ceiling — Returns the smallest integer greater than or equal to a number. When it’s a negative number, it will
return the number closest to zero.

4 = NextWhole - Returns the smallest integer greater than or equal to a number. When it’s a negative number, it will
return the number farthest from zero.

pDecimalPlaces

The number of decimal places to preserve. For example, when 2, it rounds based on the digits after the 2nd decimal
place.

Return value

Returns the rounded decimal value.

var Pl = 3.14159;
var vResult = DES Round(Pl, O, 0); // Truncate: returns 3

vResult = DES Round(Pl, 1, 2); // Currency: returns 3.14
vResult = DES_Round(Pl, 3, 0); // Ceiling: returns 4
Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 290 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

function DES_Trunc(pValue)

Returns the integer part of the a decimal value. Converts the type from float to integer.
Parameters
pValue
The initial decimal value.
Return value

Returns the integer part of the a decimal value. Converts the type from float to integer.

var Pl = 3.14159;
var vResult = DES Trunc(Pl); // returns 3

function DES_SetlnnerHTML(pField, pHTML)

A browser independent way to update the inner HTML of a tag. Usually you will define a tag with an ID. The inner
HTML of that tag will be updated. A System.Web .Ul .WebControls.Label creates such a tag and its
ClientlD is the ID to find the tag on the page.

Parameters
pField
The DHTML element for the HTML table. Use DES_GetByl1d() to convert a ClientID into an DHTML element.

pHTML
The inner HTML.

DES_SetlnnerHTML(DES_GetByld("Labell®), "New Text");

function DES_RERpl(pText, pFind, pReplace)

Replaces text in a string. Internally, it uses a regular expression to do a case insensitive match for the text pFind and replaces
it with pReplace.

Parameters
pText
The text to be modified.
pFind
The text to find within pText.
pReplacet
The text to replace.
Return value

The updated value of pText.

var vText = "This is {0}.";
vText = DES_RERpl(vText, "{0}", "replaced text");

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 291 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Adding Your JavaScript to the Page
Some of DES’s features allow you to write your own JavaScript. When writing JavaScript, you can put it in three places:
e Directly on the page. It is typically placed before the <form> tag. Be sure to enclose it in <script> tags like this:

<script type="text/javascript® language="javascript® >
<I--

add your function code here

// -->

</script>

e Inyour Page_Load() code using the Page -.RegisterClientScriptBlock() method. You must still include
the <script> tags in your code:

[C#]
uses System.Text;

b;étected void Page_lLoad(object sender, System.EventArgs e)

{
StringBuilder vScript = new StringBuilder(2000);
vScript.Append(*'<script type="text/javascript®™ language="javascript® >\n"");
vScript.Append(''<!-- \n");
vScript.Append(add your function code here);
vScript.Append(*'// -->\n</script>\n"");
RegisterClientScriptBlock(*'KeyName", vScript.ToString());

}

[VB]

Imports System.Text

Protected Sub Page Load(ByVal sender As object, _
ByVal e As System.EventArgs)

Dim vScript As StringBuilder = New StringBuilder(2000)
vScript.Append(‘'<script type="text/javascript® language="javascript® >")
vScript.Append(‘'<l-- ')
vScript.Append(add your function code here)
vScript.Append(*'// --></script>"")
RegisterClientScriptBlock(*'’KeyName', vScript.ToString())

End Sub

e Inaseparate file, dedicated to JavaScript. This file doesn’t need <script> tags. Instead, the page needs
<script src= >tagsto load it. The script tags should appear before the <form> tag.

<script type="text/javascript® language="javascript® src="url to the file" />

Embedding the ClientID into your Script

If your scripts are embedded into your web form, you can use this syntax to get the ClientID:
"<% =ControlName.ClientID %>"

For example:
DES GetByld("<% =ControlName.ClientID %>");

If you create the script programmatically, simply embed the ClientID property value. For example:
vScript = "DES GetByld(™" + ControlName.ClientID + "®);"

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 292 of 309

http://www.peterblum.com/des/support.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.page.registerclientscriptblock(vs.71).aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Debugging Your JavaScript

You can debug JavaScript in Internet Explorer by using Visual Studio as your debugger. Open the Tools; Internet Options
menu command and select the Advanced tab. Then unmark Disable Script Debugging.

After launching your web page from Visual Studio, switch back to Visual Studio. Then select Debug; Windows; Script
Explorer (or Running Documents in VVS2002/3) from the menubar. Double-click on the filename containing the JavaScript
function and set a breakpoint inside the function. Now resume using your browser.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 293 of 309

http://www.peterblum.com/des/support.aspx�
https://addons.mozilla.org/en-US/firefox/addon/1843�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

The Condition classes

Many features of DES use the Condition classes. These are objects that evaluate something about your page and return
“success”, “failed”, or “cannot evaluate”. They are used by:

o Enabler property on Validators, FieldStateControllers, and CalculationController. This is used to enable or disable the
control as the page’s state changes.

e Condition property on FieldStateController and MultiFieldStateController. This is used to select between the
ConditionTrue and ConditionFalse properties.

e ConditionCalcltem object for CalculationControllers. This is used to build IF ELSE logic into your calculation based on
the state of the page.

Condition classes are also the underlying engine for the Validator controls. As a result, they are fully documented in the
Validation User’s Guide. This section helps you quickly track down the right Condition class.

Licensing note: Most conditions require a license for either the Peter’s Professional Validation or Peter’s More
Validators modules based on the associated Validator’s license. Only the Non-Data Entry conditions are available
without a license.

Click on any of these topics to jump to them:
¢

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 294 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Evaluating Textboxes and other controls with textual values

Class name (in the name space Description and usage

PeterBlum.DES.Web.WebControls)

RequiredTextCondition Evaluates as “success” when the textbox has text and “failed” when it is empty
(or all spaces).

Usage: Assign the ControlIDToEvaluate property to the control.

CompareToValueCondition Evaluates as “success” when the value matches a comparison to another value
and “failed” when it cannot. Evaluates as “cannot evaluate” when the text cannot
be converted based on the DataType property or the text value is blank.

Usage: Assign the ControlIDToEvaluate property to the control. Set DataType
to the type the text represents. Set ValueToCompare to a string representation of
the value to compare to. Set the Operator to the comparison operator.

CompareTwoFieldsCondition Evaluates as “success” when the values of two textboxes match the comparison
operator and “failed” when it cannot. Evaluates as “cannot evaluate” when the
text cannot be converted based on the DataType property or the text value is
blank.

Usage: Assign the ControlIDToEvaluate and SecondControlIDToEvaluate
properties to the controls to compare. Set DataType to the type the text
represents. Set the Operator to the comparison operator.

RegexCondition Evaluates as “success” when the text matches the regular expression and “failed”
when it does not.

Usage: Assign the ControlIDToEvaluate property to the control. Set
Expression to the regular expression. Use properties of NotCondition,
Caselnsensitive and Multiline to enhance the logic

DataTypeCheckCondition Evaluates as “success” when the text can be converted to the type and “failed”
when it cannot. Evaluates as “cannot evaluate” when the text value is blank.

Usage: Assign the ControllIDToEvaluate property to the control and DataType
to the data type.

TextLengthCondition Evaluates as “success” when the number of characters is within a range and
“failed” when it is not.

Usage: Assign the ControlIDToEvaluate property to the textbox. Set Minimum
and Maximum to the valid character range.

CharacterCondition Evaluates as “success” when all characters are within a defined characterset and
“failed” when they are not.

Usage: Assign the ControlIDToEvaluate property to the textbox. Define the
characterset using these boolean properties: LettersUppercase,
LettersLowercase, Digits, Space, Enter, DiacriticLetters, Punctuation,
VariousSymbols, EnclosureSymbols, MathSymbols, and CurrencySymbols.
Define any specific characters in the OtherCharacters property. Exclude the
character set defined with the Exclude property.

RangeCondition Evaluates as “success” when the value is within a range and “failed” when it is
outside the range. Evaluates as “cannot evaluate” when the text cannot be
converted based on the DataType property or the text value is blank.

Usage: Assign the ControlIDToEvaluate property to the textbox. Set DataType
to the type the text represents. Set Minimum and Maximum to a string
representation of the range limits or programmatically set MinimumAsNative
and MaximumAsNative to the native type (integer, double, DateTime, etc).

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 295 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES

A moouLe oF PETERS OATA ENTRY SUITEVS

CompareToStringsCondition

MultipleRequiredControlsCondition

MultiCondition

Evaluates as “success” when the text matches to one or more strings and “failed”
when it does not.

Usage: Assign the ControlIDToEvaluate property to the textbox. For each
string to compare, add a CompareToStringltem object to its Items collection. Use
the TextMatchRule to define how the text is matched.

Evaluates as “success” when multiple textboxes have been assigned according to
arule and “failed” otherwise.

Usage: Assign the ControlIDToEvaluate and SecondControlIDToEvaluate
properties to the first two textboxes. For additional textboxes, add
RequiredTextControl objects to the ControlsToEvaluate collection. Use the
Mode property to select the rule as All, All or None, Only one, At least one, or
Range (which uses Minimum and Maximum properties).

Builds a boolean expression from any Condition objects, such as
“RequiredTextCondition on TextBox1 AND CheckStateCondition on
CheckBox1”.

Evaluates as “success” when its child Conditions evaluate as success based on its
Operator property and “failed” when it does not.

Usage: Add each Condition as a child object of the Conditions collection. Set
the Operator property to either AND or OR.

Note: There are additional conditions that are lesser used: CustomCondition, DifferenceCondition, WordCountCondition,
ABARoutingNumberCondition, CreditCardNumberCondition, and EmailAddressCondition. See the Validation User’s Guide

for details.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 296 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Evaluating Listboxes and other controls with index values

Class name (in the name space Description and usage

PeterBlum.DES.Web.WebControls)

RequiredListCondition Evaluates as “success” when the list has a selected item and “failed” when it does
not

Usage: Assign the ControllDToEvaluate property to the control. If the first
item of the list indicates “no selection”, set Unassignedindex to 0.

SelectedIndexCondition Evaluates as “success” when the list has a specific index selected or unselected
and “failed” otherwise.

Usage: Assign the ControlIDToEvaluate property to the control. Set the Index
property to the index of the list (where 0 is the first item in the list) and Selected
to true if the item must be selected and false if it must be unselected.

SelectedIndexRangesCondition Evaluates as “success” when the list has a specific index selected or unselected
amongst a list of valid indices and “failed” otherwise.

Usage: Assign the ControlIDToEvaluate property to the control. To define an
index or range of indices, add a SelectedIndexRange object to the Ranges
collection.Set Selected to true if the item must be selected and false if it
must be unselected.

CountSelectionsCondition Evaluates as “success” when the number of selected items is within a range and
“failed” otherwise

Usage: Assign the ControlIDToEvaluate property to the control. Set the range
with the Minimum and Maximum properties.

MultiCondition Builds a boolean expression from any Condition objects, such as
“RequiredTextCondition on TextBox1 AND SelectedIndexCondition where
Index=2 on ListBox1”.

Evaluates as “success” when its child Conditions evaluate as success based on its
Operator property and “failed” when it does not.

Usage: Add each Condition as a child object of the Conditions collection. Set
the Operator property to either AND or OR.

Note: Many List style controls also have a textual value as defined in <asp:Listltem value="here">label</asp:Listltem>.

evaluate them.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 297 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES

A moouLe oF PETERS OATA ENTRY SUITEVS

Evaluating checkboxes, radiobuttons, and other controls

Class name (in the name space

PeterBlum.DES.Web.WebControls)

Description and usage

CheckStateCondition
(CheckBox and RadioButton)

SelectedIndexCondition
(CheckBoxL.ist and RadioButtonList)

SelectedIndexRangesCondition
(CheckBoxList and RadioButtonL.ist)

CountSelectionsCondition
(CheckBoxL.ist)

RequiredSelectionCondition

(Calendar, MultiSelectionCalendar,
MonthYearPicker, and TimePicker)

MultiCondition

Evaluates as “success” when a checkbox’s value matches the Checked property
and “failed” when it does not. Also supports individual radiobuttons.

Usage: Assign the ControllDToEvaluate property to the control. Set Checked
to true to require the checkbox to be marked.

Evaluates as “success” when the RadioButtonL.ist or CheckBoxList has a specific
button marked or unmarked and “failed” otherwise.

Usage: Assign the ControllIDToEvaluate property to the control. Set the Index
property to the index of the button (where 0 is the first item in the list) and
Selected to true if the item must be marked and False if it must be unmarked.

Evaluates as “success” when the RadioButtonList or CheckBoxList has a specific
button marked or unmarked amongst a list of valid button positions and “failed”
otherwise.

Usage: Assign the ControlIDToEvaluate property to the control. To define a
button position or range of positions, add a SelectedIndexRange object to the
Ranges collection.Set Selected to true if the item must be marked and false
if it must be unmarked.

Evaluates as “success” when the number of marked buttons in a CheckBoxList is
within a range and “failed” otherwise

Usage: Assign the ControlIDToEvaluate property to the control. Set the range
with the Minimum and Maximum properties.

Evaluates as “success” when the control has a selected cell and “failed” if no
cells are selected.

Usage: Assign the ControlIDToEvaluate property to the control.

Builds a boolean expression from any Condition objects, such as

“RequiredTextCondition on TextBox1 AND CheckStateCondition on
CheckBox1”.

Evaluates as “success” when its child Conditions evaluate as success based on its
Operator property and “failed” when it does not.

Usage: Add each Condition as a child object of the Conditions collection. Set
the Operator property to either AND or OR.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved

Page 298 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Evaluating non-data value states of controls

Class name (in the name space Description and usage

PeterBlum.DES.Web.WebControls)

VisibleCondition Evaluates as “success” when a control is visible and “failed” when it is not. This
does NOT evaluate the Control’s own Visible property because that prevents
generating HTML. It evaluates the HTML generated to see if its styled to be
visible.

Usage: Assign the ControllDToEvaluate property to the control.

EnabledCondition Evaluates as “success” when a control’s enabled state matches the IsEnabled
property and “failed” when it is not.

Usage: Assign the ControlIDToEvaluate property to the control. Set IsEnabled
to the desired enabled state.

ClassNameCondition Evaluates as “success” when a control’s style sheet name matches the
ClassName property and “failed” when it is not.

Usage: Assign the ControllDToEvaluate property to the control. Set the style
sheet class name in the ClassName property.

ReadOnlyCondition Evaluates as “success” when a textbox’s readOnly state matches the IsReadOnly
property and “failed” when it is not.

Usage: Assign the ControlIDToEvaluate property to the control. Set
IsReadOnly to the desired readonly state.

CompareToValueAttributeCondition Evaluates as “success” when an HTML attribute or style matches the properties
shown below and “failed” when it is not.

Usage: Assign the ControlIDToEvaluate property to the control. Set
AttributeName to the name of the HTML attribute or style (case sensitive). Set
Value to the value to match. Set AttributeType to either Attribute or Style to
determine where to find the AttributeName. Set DataType to String, Integer, or
Boolean to define the type of data to compare. Set Operator to the comparison
for the Value property against the actual value in the attribute or style.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 299 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Troubleshooting

encourage you to use this knowledge base first.

This guide contains problems specific to the Peter’s Interactive Pages module. Please see the “Troubleshooting” section of

the General Features Guide for an extensive list of other topics including “Handling JavaScript Errors” and “Common
Error Messages”.

None specific to this module. Please use the General Features Guide.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 300 of 309

http://www.peterblum.com/des/support.aspx�
mailto:support@PeterBlum.com�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Technical Support and Other Assistance

PeterBlum.com offers free technical support. This is just one of the ways to solve problems. This section provides all of your
options and explains how technical support is set up.

Troubleshooting Section of this Guide

you time.

Developer’s Kit

The Developer’s Kit is a free download that provides documentation and sample code for building your own classes with this
framework. It includes:

e Developer’s Guide - Overviews of each class with examples, step-by-step guides, and other tools to develop new classes.
¢ MSDN-style help file - Browse through this help file to learn about all classes and their members.

e Sample code in C# and VB.

Getting Product Updates

As minor versions are released (5.0.1 to 5.0.2 is a minor version release), you can get them for free. Go to
_C_Héh_g_és"i_h_ the release by _él_i_éiii_h_g:_]_‘_‘_l_?_é_léééé _I_-listory”. Click “Get This Update” to get the update. You will need the serial
number and email address used to register for the license.

As upgrades are offered (v5.0 to v5.1 or v6), PeterBlum.com will determine if there is an upgrade fee at the time. You will be
notified of upgrades and how to retrieve them through email.

PeterBlum.com often adds new functionality into minor version releases.

Technical Support

respond quickly with useful information and in a pleasant manner. As the only person at PeterBlum.com, it is easy to imagine
that customer support questions will take up all of my time and prevent me from delivering to you updates and cool new
features. As a result, | request the following of you:

e Please review the Troubleshooting section first. See “Troubleshooting”.

e Please try to include as much information about your web form or the problem as possible. | need to fully
understand what you are seeing and how you have set things up.

e If you have written code that interacts with my controls or classes, please be sure you have run it through a debugger
to determine that it is working in your code or the exact point of failure and error it reports.

Classes And Types help file, and sample files. | can only offer limited assistance as you subclass because this kind
of support can be very time consuming. | am interested in any feedback about my documentation’s shortcomings so |
can continue to improve it.

e | cannot offer general ASP.NET, HTML, style sheet, JavaScript, DHTML, DOM, or Regular Expression mentoring.
If your problem is due to your lack of knowledge in any of these technologies, | will give you some initial help and
then ask you to find assistance from the many tools available to the .Net community. They include:

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 301 of 309

http://www.peterblum.com/des/support.aspx�
http://www.peterblum.com/DES/DevelopersKit.aspx�
http://www.peterblum.com/forums.aspx�
http://www.peterblum.com/DES/Home.aspx�
mailto:Support@PeterBlum.com�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

(0]

(0]

(0]

For DOM, start with the DHTML guide. Topics that are also in DOM are noted under the heading
“Standards Information”

Books

As customers identify issues and shortcomings with the software and its documentation, | will consider updating these areas.

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 302 of 309

http://www.peterblum.com/des/support.aspx�
http://www.asp.net/�
http://www.google.com/�
http://msdn2.microsoft.com/en-us/library/ms533050.aspx�
http://msdn2.microsoft.com/en-us/library/ms533050.aspx�
https://developer.mozilla.org/en/JavaScript/Reference�
http://aspnet.4guysfromrolla.com/�
http://www.aspalliance.com/�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Table of Contents

PETER’'S INTERACTIVE PAGES OVERVIEWccoiuiiiiiiiiii ittt ettt sttt e sbta e snbaee e s snnneee s 2
FIeldStateCONTIOIEIS OVEIVIBWc.ciieieieiiieie sttt sttt et s e st e tesbeese et e enees e e e teseeeseeseensesseseeteseeabenbesbeeseeseneesnens 3
CalculatioNCONTIOIHET OVEIVIBWcueiuiiiierieiiiie sttt ettt te st te st te e s e tesbestesseaseeseeseeneeee s e emeeseeseenseseesaebeneeabeabeenseneeneeneas 3
QL= Lo U g) (=T @ AT Y 1= YT PRPRR 3
ContextMenu and DropPDOWNMENU OVEFVIBWcuuiuiiiiiiie ittt steeie st st seestesbe bt ete st e sbesbesbesbe st ase e e aseeasebesaeabeaseensesesseneas 4
CANGEIMONITOE OVEIVIBW.......itiiiite ittt ettt ettt e bt be et e st e e e b e ke ebeeb e e b e eheeb 24 o be bt eae e b e e Eeeh e e b e e Rt eh e e s en b e eaeebeaseenseneennentas 4
INTEIACTIVE HINTS OVEIVIBW ...ttt ittt ettt etttk e s e b e s e e ke s be e b e e b e Rt eE e eh e e b e e Rt eb £ e b e e bt e b e e s e enb e st e et e eneane e s e e e b ee 4
ENNANCEA TOOITIPS OVEIVIEW........cuiiiiiieieiiite it sttt e ettt st st e te s beete e s bestesbesbesteebeeteeae et s eseesteeae et e eseensessessenteseenbesseeneeeensestenrens 4
ENNANCEA BULLONS OVEIVIBW.uiiiitiiieiiiteiieieste et ste et st e sttt sbe e et e tesbe e ebese et e ebeseebe st e e e seebesbeseebesbe s e abese et e abe e e neebenbeseateneerens 4
Direct Keystrokes t0 ClICK BULLONS OVEIVIBW.........cviiiiiie et sesteste e ste e s e steste e es e stestessesseaseesaeseeseensesesssessesssesenssessesenns 5
FIELDSTATECONTROLLER AND MULTIFIELDSTATECONTROLLER CONTROLS......ccoooiiiiiiiiiierieee e 6
FFBAITUIES ...t ettt et R £ e R e R oo AR e R e e e AR R e R E e oA e R e e R e e R e et nR e n R e nre e r e 7
USING the FIeldSTateCONTIOIELS.coviiiieeeite et bbbt bbbt b e ekt s bt b e sb bt eb et et e ab e ebe e ebenresea 8
LI LI O30 11T o OO OSSPSR 8
Controls that run the FIeldStatECONTIOIETcoiiiiei ettt b et b et 9
(@0 T 0] L IO 4 T T ST RPRSRSR 10
ATFDULE VAIUES TO CRANQE .. ettt ettt st et st st e s beeaeeRe e s e es e se e st e aseeseeseenseseeneenteseeseenneeneeneeneeeenes 11
Extending the Attributes With YOUI OWN COUB........cuiiiie e sestiee ettt e s e e e esae e esaesaesteaneenaeseeeenneneens 12
Client-Side Function: The Change State FUNCLION. ..ottt bbb 12
SErVEr Side EVENT HANGIETc.ooeeeee et sttt ettt en et et e tene e bentesbenbeenteneenne b nes 13
UPAALING VAIIAALOTS ...tttk b bbbt b etk h et bbb et ekt s b bt eb e e et e eb et e b ekt e b e e et e nbebeebe e b e anes 14
Changing Visibility 0n a ComMPIEX CONIOLcouiiiiiiiiee ettt bttt be bt e e e snenas 15
ST] 1111 o] o TSSO TP 15

LI Lo [o LT TR L= OOV ORI 16
JavaScript: Running FieldStateControllers 0n demandcccoviiiiiiiiieie et sr et reere e s re e s 17
Controls That Have Child CONIOIScviiiiiiiieiie ettt et sttt b ettt ne bbb e 18
LC1= (@3 aT] (o 1Y, = oo OSSPSR PRURPRPR 18
Installing the GEtChIld METNOMccvoiiiii e e ettt e e sae st e besae st e s tesneereaneeneennens 19
EXample: FIeladSTateCONTIOIIEEttt et b et b e et et e b e eb e besbesbesbe e be e sbe b e 20
Example: MUITFIIASTAECONTIOIIEYcc.oiiie ittt e bbbt bbb bt bt b bt st e bt b e et 21
Adding the FieldStateController CONTIOL.........cciiiii it b e st be st esre st e tesbesbesreanaereenes 22
Adding the MultiFieldStateController CONTIOLcce i be e re e et et srees 26
Properties of FieldStateController And MultiFieldStateCoNtrOlIErccccv v i 31
INVOKE the ChaNGE PrOPEITIES ...ttt sttt bbbt bbbt h e e s b e b e b e bt e he e R e e me e b e ee et e nbesbesbeenbeneesee st ee 32
Ofe] ol i o] R WO O g FTaTo Tl o o] oL 4 (T OO UP PR 34
ATIDULES TO ChanNQe PrOPEITIES. .. .cuiiiiie ittt sttt sttt e e s be st e e teetsese e s e st e e et e be et e e e enb e ee st e bestesbestesseeneesreneees 35
Properties of ConditionTrue and CONAItIONFAISEcccviiiiiiiieice et sresreras 36
Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 303 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

UPdate Validators PrOPEITIESc.eiitiieiiiitiit ettt ettt bbbt bbb bbbt b s bt b bbb s bt bt b s b nens 39
When t0 USE the CONTIOL PrOPEITIESc.ciitiiieiiteiieieite ettt bbbttt b ettt st et b e e bt be e et e sbe b e 40
TS VLo g o (] o LT 4 1= OOV USRS 42
FSCONCOMMAND AND MULTIFSCONCOMMAND CONTROLS......ooiiiie ittt 44
FFBAITUIES ... ettt R Rt et R e e R £t AR AR R AR E e AR e AR et AR e e R et e R e e Re e Re et en e e nne e reen 45
Using the FSCONCOMMANT CONTIOIS.........ciiiiiiieieiesie ettt bbb b s et b et bbb bt n s 46
Controls that run the FSCONCOMMANG CONIIOL.......c.oiiiiiiiiieiiiie bbbt 46
(O0o T i o] [WO I O 4 oo -SSR 47
ADULE VAIUES TO CRANQE .. vttt ettt et st et e s beeseeseesees e e e eEeaseas e e s e enseseeneenseseesee s e eneeeenee e nes 48
010 T T0 Y 2= 1T F o] P 49
Changing Visibility on a ComPIEX CONIOLcciiiiieiiice et e e stesneereeneeneeneeneeneas 50
Example: The DateTEXIBOX CONIOLc.ciuiiiiiieiiiteiete ettt b e bbbttt s bbbt ebe et e ebe e b 50

ST] 1111 o] oS PP 50
Selectively RUNNING the CONIOL..........ooi ettt s b et e b e b e b sbeeb e besbe et e b be b sbeeas 51
EXampPle: FSCONCOMIMANGcviiieiieieitisie e see et seestes et stestesse et e saesbestestesseaseaseeseesse e e sseaseaseeseensensessenseseeneeassenseseenenneees 52
Example: MUIGIFSCONCOMMEANG.........coiiiiiieiiseie e es e te e esa e e e e es e seestestess e e e eneeaesaeneesteatesteaneaseenreneenes 53
Adding the FSCONCOMMANT CONTIOLccuiiiiiiiiiiti bbbt b ettt 54
Adding the MUltiFSCONCOMMANT CONTIOL........ooiiiiiiiii bbbt 56
Properties of FSCOnCommand And MUItIFSCONCOMMANGcooiiiiiiiieeee e 59
INVOKE the CRaNQE PrOPEITIESecvieieeeieieseeste st ste ettt sttt e et st e s te st e eneeseeseesee e e e e aseeseeseeneene e e e eeneeseeneeeneenneneeeees 60
LOTo Lo R WO T O g TaT T T o o] o PP 62
ALLHIDULES TO ChanQe PrOPEITIES. ... c.veiiie ittt ettt et et e s se st e se et es e se e besteeseeseenseseese e eesteseeneeaneeneeneeneenes 63
UPdate Validators PrOPEITIEScc.eiitiitiiiitirietiste sttt ettt bttt bbb bbb bbb s bbbttt b et h e bt bt b ne st nens 66
When T0o USe The CONIOl PIrOPEITIES........c.ciuiiiiiitiieeiiiteie ettt ettt r et b e et b et et ab et be b bt et e b e ane e e 67
BENAVIOT PrOPEITIESottt ettt bt b e b b ek h e e b bt e b et e bt s b b e eb e e e bt eb et e e ekt e b et et e neebeebe et e ares 69
CALCULATIONCONTROLLERcciittiie ittt sttt et e e s ettt e e e st e e e e s nbe e e e enbe e e e annbeeesnneee 70
FFBAITUIES ... ettt R Rt oo R e e R £ et R AR e AR e AR e AR e AR e e R et e R e R e e R e e R e n e ne e reen 71
Using the CalCulatioNCONTIOIIEToui e et s et et e teeseeseeseesae e e testesbesbesneeseeneeneenes 72
Creating the EXpression: The CalCIEM CIASSEScvciiiieiieiiie ettt sttt e et et be s teete e e e e e e st et e sbeerae e eneesnesreeas 73
PeterBlum.DES.Web.WebControls.NUmericTEXtBOXCAICITEM...........coviiieiiiiieiitisie sttt 74
PeterBlum.DES.Web.WebControls.ConstantCalCItemccoveiiiiieiie ettt 75
PeterBlum.DES.Web.WebControls. ListConstantSCalCItEM ..o 76
PeterBlum.DES.Web.WebControls.CheckStateCalCITEMooiiiiiiiiie et 77
PeterBlum.DES.Web.WebControls.ParentheSiSCAICITEMcc.ooiiiiiiiie et 79
PeterBlum.DES.Web.WebControls.ConditioNCalCIteM........c..oiiie ettt eeas 80
PeterBlum.DES.Web.WebControls.CalcControllerCalCItemcooviiieiieiiee e 82
PeterBlum.DES.Web.WebControls. TotalingCalCITeMccoiiii e 83
PeterBlum.DES.BLD.DataField TotalingCalCITEMcc.oiiiiiieee bbb 84
General Guidelines fOr CalCIteM ODJECLSc.eieiiee ettt ettt b e e e e s 85
DiSPIlaying T RESUILc..oiiiiii ettt e et e e e e et e s be st e s teebe e ee st e besbeebeabeeaeeteeseeneesheeteaneenseseeneeneeseens 86
Using the Result in Validators and CONAITIONSc.ccucieiiiiiiie et s re e e e e e e s eseesae b e eneesseseneeneeseens 87
Using the Result in YOUr SEIVEr-SiAe COUEccviiiiiicie ettt sttt st et st e st e s teeaeetaeseese e beetesneenseseeneeneeseens 88
JavaScript: Running CalculationControllers On DEMANGccccveieriiiieiire et sre st ne e 89
Adding the CalculatioNnCoONTrOHEr CONTIOL..........c.iiii ettt ettt b et e st ene e e e e et e e eas 90
Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 304 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Properties on CalCulatioNCONTIOIIEToci it be s te s te et e be st e s besteabeateaae et eeneenee e 92
Calculating The ValUE PrOPEITIEScouiieiiitiiitiieeieet ettt bbb bbb bbbt b et b ettt be et b e 93
SNOWING THE ValUE PIOPEITIES ...ttt bbbttt s et e b e b eh e st e s e e b e b et sbeebenbeebeebeebenbesbeneas 98
When 10 USE the CONLIOL PIOPEITIEScouiiiiieitieieee ettt ettt bttt e bbb et e bt b e e b e nbeebesbe s bt bt et e neenee e neas 100
BENAVIOT PIOPEITIES ...ttt ittt sttt etttk e et e e s b e b e e bt e b e e b £ e b e eb e e h e eb e eE e e b e e b e e Rt eb e e ae e ebeebeebeebeansenee e et es 103
Properties 0N CAICITEM CIASSESciiiiiitiiii ittt bbb bbb s bbb bbb et bbb st et 105
Properties Common TO All CalCHEM CIASSEScveieieieiisie sttt sttt te e e e et e e saesreeneenee e e nre e es 106
Properties for the PeterBlum.DES.Web.WebControls.NumericTextBoxCalcltem CIass.........c..cccoveveveneienicvecicieseniens 107
Properties for the PeterBlum.DES.Web.WebControls.ListConstantsCalcltem CIass............ccovvivivveiieieenniivsinseecreseies 108
Properties for the PeterBlum.DES.Web.WebControls.CheckStateCalcltem ClIasscccovevvviiviiieieiinin s 111
Properties for the PeterBlum.DES.Web.WebControls.ConstantCalcItem Classcccvvvvveierieieeienesin e seeeeseeie s 112
Properties for the PeterBlum.DES.Web.WebControls.ParenthesisCalcitem ClIasscccvoviivieniieinniininicseseeeesee e 113
Properties for the PeterBlum.DES.Web.WebControls.ConditionCalcitem CIassccocevvrierieiiinieinene e 114
Properties for the PeterBlum.DES.Web.WebControls.CalcControllerCalcltem Class..........cooererieiniiieiiiineeieeeeee e 118
Properties for the PeterBlum.DES.Web.WebControls. TotalingCalcltem Classcccoveriieriienin e 119
The GetColumnControl VENT NANAIETc.o bbbt b e bt ee e e 120
Properties for the PeterBlum.DES.BLD.DataFieldTotalingCalcltem Classcocovveveieiiieiieiiece e 122
FANo (o Tglo M @AUT (o] g gl Ol [0 (o I W 0% 1 o] | =104 ISR 123
The Client-Side Function and the CustomCalcFunctioNName PrOPEIYcccveieieiiie i e s 124
The Server Side Event Handler and CustomCalculation ProPerty........coooeireiiiriininineinescsiesiesee e 125
INTERACTIVE HINT S ...ttt ettt sttt ettt e sttt ettt e sttt e e e s st e e asste e e e ass e e e s ssa e e e e s beaeeeansbeeeeansbeeeeanseeaeenntnbeaeennneis 127
FFBAIEUIES ...ttt ettt h et bt e bt e a bt o he e be e b e e a b2 e E £ e b e e R b e AE £ e She e ARt 4R R e SR e e SR b £ SR b e AR £ e AR £ e b e e R b e e R e e nbe e e eneeeReereenne 128
WWHEN USING LADEIS ...t b bbb bbb bbbt b e bt e bbb e st e bt e bt bt et b et 128
VWHEN USING POPUPVIBWS ...ttt sttt bbb btk bbb e b bbb £ bbb e b e e b b e bt e b e st ekt b e s b e st bt et bt e 128
Other Ways t0 AISPIAY HINTS ..ot bbbt bt b h bbbttt b et bbbt b b e e 129
Interactively CustomizZing the HINE TEXE........oii ettt bbbt bbbt et seeneenr s 129
L0 L L To I L T =T £ LY=o TSRS 130
Displaying Hints: The PeterBlum.DES.Web.WebControls.HintFormatter CIasscccoviiiiiiiiinie i 131
Page-Level Hint Settings: The PeterBlum.DES.Globals.WebFormDirector.HintManager Propertycccccoevevvevernennene 132
Showing Validation Errors IN The HINESciiiiiiiie et sttt e e e tesneene e e e e eeesneeas 132
Adding HintFormatters to the SharedHIiNtFOrmMatters PrOPEITYcociviiiii it 133
When using a PopupView: AddSharedHINtPOPUPVIEW() ...vvvereeeercieiie e se ettt st enae s 134
When using a Label on the Page: AddSharedHINtONPAGE().......erververeierereiise e st e st e e 136
Using Your Own HintFormatter definition: AddSharedHINtFOrMAter()cooereierrineine e e 138
DETINING POPUDPVIBWS. ...ttt ettt bbbt b et b e h bbb ekt b e ekt e bt e b e ekt eb e bt e bt e e bt e b et ekt ekt eb et et e nreseebenrenea 139
VieW an eXISTING AeFINTTION ..ot bbb bbbttt bbb e b e s 140
o L1 W T a1 To] OSSO UURPRPRPRO 142
Yo [0 I o (1 11T (o] [OOSR 142
RENAME 8 AETINMITION ...ttt bbbt bt b et h bbb e bt eb e e bt e hees e et en b e ne e ek e e seene e e e benbenans 142
DL 1<) C T W (=] 1010 PSSR 142
Creating YOUr OWN CallOULScvoiiiiii it te et s e e e s e et et e s e e st e e ae e st et e e e sbeseesbesbeabesteebeneenrenran 143
Adding your own Callouts to the POPUPVIeW DEfiNItIONccccoveiiiiiiiie e 144
USING POPUPVIEWS ...ttt sttt sttt sttt s e st ne s e s e st e s e e e e ee s e e e e s e e e e e e R e R e e R e e EeeReeRaen b e nbeeeeebeeneaneeneeneensees 145
Defining HINtS SHOWN 0N The PAGE......c.uiiie ittt et st e e sae st e bestesbenreaneereeneenre e 147
L L [T = = 1 OSSPSR 147
Using a Panel containing @ LADEL..........ci i e 148
Customize How Hints Appear: The FOrmatter FUNCIIONcooiiiiiiiiiieesie et 149
USING HiNS SNOWN ON ThE PAGEeveitiieeiiiteiee ettt bbbttt b etk b e bt ekt s b bt ebene et e abe e et nebenre e 150
Customize the Text of the Hint: The TeXE FUNCHIONc..oouiiiiiiiie et st sbe e e 151
Javascript functions: Show and Hide the Hint ONn DemManQ............cooiiiiiiiiiiiiie e 152

Providing an INitialiZation FUNCHIONoouiiiiiie e st b et bt e b e bbbt sbesbe e aneas 153

Adding a Hint to any Control Programmatically: PeterBlum.DES.Globals.WebFormDirector.AddHintToControl
V1= 1 oo IO OO SO PO PO PTPTOOPRPROTO 154

Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 305 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Properties for the PeterBlum.DES.Web.WebControls.HintFormatter Class...........ccccocvvvviiiininiii e 156
Properties on the PeterBlum.DES.Globals.WebFormDirector.HintManager Property........cccococvcervieneiscsienenesennnns 160
Properties for the PeterBlum.DES.Web.WebControls.HintPOPUPVIEW CIaSSccceverereriirieses e e se e se s 163
OVErall APPEAIrANCE PIOPEITIESeiveiiiiuieiieieie ettt ettt bbb b et e be b b e b e e bt e bt e e es b e se e b e ebeab e e s e e e e besbeebesbenbeabeenbenbenbens 164

L (o T LT g (o] oLl 1T TSROSO URRR 165
T To VA (0] o 1=Y 1TSS 168
0T (=T (0] o T=T 4 =TSRSS 170
(08 11TV o o] 0T (TSP 172
oL LT T 0] 0= SR 174
(@] T gl 0] 0T PSRRI 175
ENHANGCED TOOLTIPS ..ottt et e e e ettt e e st e e e e s tte e e e aste e e e e ssbeeeeasbeeeeeantaeeeeantaeeeeasbeeeeansbeaeeennsees 178
FFBALUIES ... ettt ettt h e bt et e e ae e Rt e R e e R £ e R s e AR £ e Rt oA R e AR £ e ARe SR e 4R R e S RE e SRR e eR R e eR e e R e e R e e AR e e R e e nEe e e aneenReereenes 179
0L [To =g g =T aTor=To B I o] N T TSRS 180
HintManager.AddTool TipPopupViewToControl() MEthOdooiiiiiiie e 181
TEXTCOUNTER CONTROL ...ttt ittt ettt ettt sttt sb e e s s ssb e e e s bttt e e sabt e e e e smbeeee e sabeeeesanbeeeesnsbneeeannreeeens 182
FFRATUITES ..ottt b et ekt e e h bR R AR 4R e R R R R R R e R R Rt R e R £ AR £ R R e R e e s R R Rt R e n e nenrenn 182
USING the TEXTCOUNTEE CONTIOLc.iiiiiitiieiieit etttk bbb s bbbt bbbt b bbb 183
CONNECEING TO @ TEXEBOX .. .eviitiiteitiiieiteeteeeetesteetes e et eseeseesaeseesbesteeseeseesebesaeabesbesaeataeseesbeabeabesseabeeseenseseeseenseseenseseeseseeseens 183
EStabliSNING the LIMILSoviiviiiitiie sttt ettt et e s b e st e e be e s ee st e s besbeeReeteeReesaessenb e aeebeeneeneeseenrentees 184
Setting the TeXt aNd STYIE SHEELS.......i i e e e e s e et e st e es e e e e s e eeseeseesreanesreaneennenrens 185
TOKENS 1N IMIESSAQESveveuveeestesieeteeseeseestesteatesseeseeseeseestessessesseesseseesseseeseebesaeaeeaEease e eeaeenbesReeReaseeneaseeseeneeaneareaneenseneeeensenes 186
Adding @ TEXTCOUNTEE CONTIOL ...ttt a et e et e b e s b eb e et e s b e s be et e besbesbesbesbeabeenbesbenaens 187
Properties of the TEXTCOUNTEr CONTIOL...........cciiiiiiiccec et b et te b e se et e besresbestesaesteaneeneas 189
TEXEBOX PIOPEITIES ...ttt etttk bt b bbbt bRt e bbb s b b st b e bbb et bt s b et e bt bt et bt 189
IMIESSAGE PrOPEITIES ...ttt ettt bbbkt b et b bbbt e ekt b e bt e ekt e b e st eb e se e b e eb e b e bt e b e bt b ekt eb e s e et e nn et e ebe et 191
AADPEAIANCE PIOPEITIES ...ttt ettt ettt ettt ettt sb e et et e beeb e ke e b e eb e e b e e HeeE £ e S b e e b e ebeeb e e Rt e Rt e b £ e ReeRb e b e e e bt ebeese e s e ntennentan 194
BENAVIOT PIOPEITIES ...ttt ittt sttt ettt ekt b et et et e e e e b e eb e e b e e b £ et e e e h e e b e e b e e R e e b e e Rt eb e e Re e ek e ebeebeebeensene e e et ee 197
CONTEXT MENU AND DROPDOWNMENU CONTROLS ...ttt sttt e e s e e sbeeeeenne 198
(L= LU TSRO 199
USING ThE CONTEXE IMBNU ...ttt etttk b b et bbb bbb b £ H bbb bbbt b bbbt bbbt 200
(@ T L A o] 01T U= o= PSSR 201
Menu Commands: PeterBlum.DES.Web.WebControls.CommandMenultem Class..........cccovriverriinins s 202
Providing a Script fOr YOUr COMMANG..........cviriiiiiiresese et e st tesresteere e e esaeaes e saeeseeseeneeneensensennens 203
Appearance of Menu COMMANG ROWSciiiiiiiiiitiieie ettt b et b bbbt st eb bbb nb e ann 205
Adding a PeterBlum.DES.Web.WebControls.CommandMenultem to the ConteXtMenU..........c.cccevereveniinienieresenees 207
Properties for PeterBlum.DES.Web.WebControls.CommandMenUItEMcccveriiiiniie s 210
Menu Separators: PeterBlum.DES.Web.WebControls.SeparatorMenultem Class ..o 212
Appearance Of IMENU SEPAIALOT ROWScouiiiiieiiiiiie ittt et te sttt e et et sbesbesbesb e st e e bt ebease e ebeebeebeebeeneenee s eneeee 212
Adding a PeterBlum.DES.Web.WebControls.SeparatorMenultem to the ConteXtMenUcccceveiiieniiecieienienie e 213
Properties for PeterBlum.DES.Web.WebControls.SeparatorMenuItemM...........ccccoeieieiieiinicie e 214
Hint Rows: PeterBlum.DES.Web.WebControls.HINEMENUITEM CIaSS.........c.cceiviiieiiiiieieii e 215
APPEAranCe OF IMENU HINE ROWS........cc.iiiiiiiieiieees ettt ae et e e e e et e beseesbesbeesbeseestesbesbesbeatesneareeseeneeans 215
Adding a PeterBlum.DES.Web.WebControls.HintMenultem to the CONtEXtMENUccccvevvvercieicre e 216
Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 306 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Properties for PeterBlum.DES.Web.WebControls.HINtMENUITEMcooiiiiiiiiiiei e 218
Popup Controls: PeterBlum.DES.Web.WebControls.MenUACLIVALOr ClaSScovvveriereriiesiiee e 219
INSerting VariableS INT0 YOUE SCIIPLSoiuiiiiiitieiiii ettt ettt e bbbt bbb sb e bbbt et e e eneenes 220
Adding a PeterBlum.DES.Web.WebControls.MenuActivator to the ConteXtMenUccoceeieerininieiinieeeieeeee e 221
Properties for PeterBlum.DES.Web.WebControls.MeNUACHIVALONcciiiiiiiiiee e 223
Using the DropDOWNMENU CONTIOLc.iiiiiiiiiiite bbbt bbbttt b et b et et nn e 224
Customizing the TOGQIE DULION............eciiiece e e ae e e e e s e e et e e sees e e e et e seeseesbesbesaesteenbeseesrens 224
AAAING 8 CONTEXEIMENU ...ttt sttt b e bt b bbb s b e b h e bt b e e e b £ bt eb e bt e bt b eh e bt e bbbt et bt st b 225
070l gl o] (<] Lol == 0] o] - O SUU R URURURO PSP 227
AdAING @ DIOPDOWNIMENUcuiiiiiieiie ettt ettt ettt b e bt e sb e besbeebesbeeb £ eb e e R e eh e e s e e sEeebeeb e e Rt eRsesee e enbeneesbesseeneennennanbesaens 228
LOfe] gl o] (<] Lol == 0] o] - O URUR USSP 230
Properties 0f the CONTEXIIMIBNUL..........coiiiiiie et e e st e te e teeaeete e e e st e st e sbeeaees s e e enseseesrestesbesbeatesnbeseenrenns 231
IMENU STIUCTUNE PTOPEITIESveieitieetecte ettt etttk ettt b ettt b et b bbb e b b ek e ke bt ekt s b e bt e bt et e bt eb et ek e et e abe e ebenneneas 231
MENU [TEIM APPEAIANCE PIOPEITIES. ... c.eieete et sttt ettt sttt ettt et bttt et e e st et e s eees e besbeebeeb e enbesbeebeebesbeebenbeebeebeeneenbene 232
OVErall APPEAIrANCE PIOPEITIESeiveiiiiuieiieieie ettt ettt bbb b et e be b b e b e e bt e bt e e es b e se e b e ebeab e e s e e e e besbeebesbenbeabeenbenbenbens 235
POPUP BENAVIOT PrOPEITIES ...ttt ettt b et bbbt b bt h e b e e s h e bt e bt e R e e Rt e st e e et e sbesb e e meenbe e e nne b es 236
T VAT g o (] o T=T 4 =TSSR 237
o] o 10 ol oo {0 g T 0] o] (=TSRSS 243
Properties 0f the DIOPDOWNIMENUcoiiiiiiiiiie et bbbttt bbbt bbbt bbb st et r e 244
QLI To LT @0 01 o] I o] oT=T 4 =TSRSS 245
o] o LU W s Vg TCT B o o] 0T o TSRS 247
ASP.NET Representation 0f NeSted PrOPEITIESccveieiiiiieiieisie sttt s e e saesresre e e e e s 247
POPUP BENAVION PIOPEITIESttt ittt ettt b etttk bbbtk bt ekt bt eh et ekt s b st e b e e e bt ab et et e et e abe e ebenreneas 248
BENAVIOT PrOPEITIES ...ttt ettt b et bt e bbbkt h et e ek e e b e e bt eb e bt e b e e ekt e b e e et ekt eb et et e seebeenenrene s 249
ENHANGCED BUTTONSottt ittt ettt se e st e e sttt e e sttt e e e e sttt e e e asbe e e e e st beee e abbeeeeeanbbeeeaanbeeeeaasbeeesantbeaeeeanses 250
FFRATUINES ..ottt etttk ekttt e e h bR R AR e 4R e R e AR e R R R £ R e RS R oAt R R £ AR £ R e e R e R e e E AR e R R R e n e nenrens 250
USING the ENNANCEA BULLONSiciiiicice sttt sttt e e es e e e et e ene e s e e s e eneeneese e testesee e e eneeneenrenn 251
WA (o TTaTo I Ll =g g = T Tot=To I =0 o (o] o 1P 252
Properties 0N ENNANCEA BUTTONSooviiiiiiicie bbb bbbt b ettt st 254
T VAT g (] o114 =TSSR 254
(@8 a T TaToT=1 o) T (o] g (o] o= TSSO 255

R L0 AT T (0] 0T TSRS 256

L LA oo B oo I T o B o] =T TS 257
AADPEATANCE PIOPEITIES ...ttt ettt ettt et b etk ekt bbb bt e bt b e b oAb ekt b e Rt e b b e bt b et e bt b e st eb e e bt e b e st e bt et bt 260
Programmatically Adding These Features t0 NON-DES BULLONSccccoviiiieiieiiiiee et 261
The PeterBlum.DES.SUDMItBENAVION ClIaSS........iiviiiiiiiieie sttt ettt sttt ase e s et et e e sreeseeneeseeneenaeneens 262
0] 01CT LTS URTRURPRUPRTRN 262

(00 g1 (g0 Tox (0] £ T T T TSP UPOU PP UR PO PP 264
CHANGEMONITOR ..ottt e e e sttt e e e skttt e e sabe e e e e aabe e e e e abbeee e e ebbeeeeanbeeeesambeeeesabbeeeeennbaeeesanes 265
(L= LU TSRO 266
USING the CANGEMONITON ...ttt bbb bbbt bbb s kbbb b e b e bttt e bt sttt 267
Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 307 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

The ChangeMONITOr PIOPEITYoveuiiiiietiitiiit ettt bbbt bbb bbbt b bbbttt b et st 268
Changing the SEAtE OF BULIONSciiiiitiieiiteieete ettt bbb bbbt e s h bbbt bbbt bbb s b e 269
USING SEIVEE SIAE COUR ...ttt sttt bbbkt b bbb e b e b e b e Rt e R et £ ek e b e eb e e bt e mees e e neenbenbeabeeneeneeneebabenean 269
Making Data Entry Controls NOLITY ChanQES........c.coiiiiiiiiiiie ettt e bt nn e e 270
UsiNg the NatiVECONIIOIEXIENTETeieiieieie ettt et s e e bbbt bbb bt b s beebesbeeae e b e e e eneennea 270
Using the ChangeMonitor.RegisterForChanges() Methodcccoviiiiiiciiie e 270
USING the FIeldStatECONTIOIIENcviieece ettt sttt e et et eese e s e et et e seeeteeseessesee s e teseesbesteateesrenteneens 271
The PeterBlum.DES.Web.WebControls.ChangeMonitorCondition CIassccccceveieiieiiie e 271
USING YOUF OWN JAVASCIIPE COUE. ... cuveueiieie ittt sttt sttt s e e e s tesse et e se e st e s e e e saesaeseeeseenteaese e beseeseeneeaneeneeneennenns 272
Validation Group and ChangeMONItOr GIOUPDS.ccveueiueieresteressteseestestessestessesseeseeeessessessesseesseseessessessessesseessessensessensenses 273
Properties of the PeterBlum.DES.Globals.WebFormDirector.ChangeMOoNitorc.cocvieiiiieniciiiineeceeeeee e 274
ChangeMonitor SErver SIde IMETNOMS.coiiiii e e st e st e s be et e st e s be s bestesteaneareeneeneenes 276
ChangeMonitor JAVASCIIPT FUNCLIONSciiiiiiii sttt e e e e st et e st e st e s tesbe et be st e besbesbeebeeneereeneenrenes 278
DIRECT KEYSTROKES TO CLICK BUTTONSottt sttt ettt st e e snbe e e s anbe e e s nnenes 279
UsiNg the NativVECONTIOIEXTENAENcove ittt s e e e et e st et e sn e e et e teseentestearentesneaneenrenrs 280
Using the RegisterKeyClicksSControl() MEtNOM. ..o et e e ns 281
PeterBlum.DES.Globals.WebFormDirector.RegisterKeyClicksControl Method.............ccccovviiiieiiieie v 282
CUSTOM SUBMIT FUNGCTION.ciiiitiii ettt e st e e e st e e e s stte e e e e s tae e e e sata e e e e aateeeeatbeaeseastaeaesasteeeeansteeesannes 283
Using The Custom SUDMIT FUNCLIONoiiiiiiii bbbtk bbbttt 283
e To T Y o]l o 0] o T AT OSSR USSP RRT 284
ADDITIONAL TOPICS FOR USING THESE CONTROLS.......coiiiiiiiieiiiiie st e s sitee e ssiree e ssveee s sneaeeeessnsaeeesnnnaeas 285
PAGE LEVEL PROPERTIES AND METHODS........ccutiiiiiitie ittt siat e stee e s sitee e antebe e e s sntaea e s snbaeesasbeeesansnnes 286
Properties on PeterBlum.DES.Globals.\WebFOIrMDIFECIONcc.civiiiiieiieie ettt sttt s resre e eneas 286
ValiAALION PIOPEITIES ...tttk b et bbb bt etk E e bt bbbt e bt e bt b e bt e st e b e b e bt b e et bt eee 288
JAVASCRIPT SUPPORT FUNCTIONS ...ttt ittt ittt biee e sttt e teee e e sttee e s sntbaeeessssteeesnsseeeesnseseesansnseeessnsneeess 289
GBNETAL UTHIITIES ...ttt et b e et b etk b e s bRt b e s b e bt b e e b e b et e b e e b e e b e st e b st e bt s b et et s bt ebe b b e 289
ADDING YOUR JAVASCRIPT TO THE PAGE..... ettt ettt et en e e s e e e nnnneas 292
Embedding the CHentID iNtO YOUE SCEIPL........viiiiiiciece ettt sttt e s ae st e e neesees e steaneeneereeneenaennenns 292
DEBUGGING YOUE JAVASCEIPT.citiiitiitiiitiit ettt bbb bbb bbb bbbt b bbb bt sttt et b 293
THE CONDITION CLASSES ...ttt ettt ettt e e st e e s et e e e e ta e e e e s ta e e e e ssbaeeeaatsteeeesataeeeesntaeaesansanaeans 294
Evaluating Textboxes and other controls with textual ValUES..............ccoiiiiiiiiii e 295
Evaluating Listboxes and other controls With iINAEX VAIUEScouiiiiiiiiiie i 297
Evaluating checkboxes, radiobuttons, and 0ther CONTIOIS...........ooiiiiiii e 298
Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 308 of 309

http://www.peterblum.com/des/support.aspx�

PETERS INTERACTIVE PAGES A moouLe oF PETERS OATA ENTRY SUITEVS

Evaluating non-data value States 0f CONTIOIS..........c.cociiiiii i e e srees 299
TROUBLESHOOTINGetiiiittiit ittt ettt e ettt sttt e e satt e e e s e aste e e e s aste e e e aase e e e e snbaeeeseansaeeesanseeeesnseaeeesnseeeesesnssneesn 300
TECHNICAL SUPPORT AND OTHER ASSISTANCEcciitiii ittt staee e s snaee e 301
Troubleshooting SECtioN OF thiS GUITEoouiiiiii i e b e et b e sb e b bbb eneeneas 301
Doy =] (o] o< Sy) SRRSO 301
PELErBIUM.COM FOIUMSviiteiiitiiietiite ettt sttt sttt sbe et et sae et e se et e e be st e beebe st e e b e sbe s e et e nee bt abe e et e abesbe e ebenbesenbeneeneas 301
(e u gl (oo Vet A oo Fo =TSRSS 301
JLICCTo] 0 T Tz IS0 o) o o SO SPRPRSIN 301
Copyright © 2002-2012 Peter L. Blum. All Rights Reserved Page 309 of 309

http://www.peterblum.com/des/support.aspx�

	Peter’s Interactive Pages Overview
	FieldStateControllers Overview
	CalculationController Overview
	TextCounter Overview
	ContextMenu and DropDownMenu Overview
	ChangeMonitor Overview
	Interactive Hints Overview
	Enhanced ToolTips Overview
	Enhanced Buttons Overview
	Direct Keystrokes to Click Buttons Overview

	FieldStateController and MultiFieldStateController Controls
	Features
	Using the FieldStateControllers
	The Condition
	Controls that run the FieldStateController
	Controls To Change
	Attribute Values To Change
	Extending the Attributes with Your Own Code
	Updating Validators
	Changing Visibility on a Complex Control
	Toggling States
	JavaScript: Running FieldStateControllers on demand
	Controls That Have Child Controls

	Example: FieldStateController
	Example: MultiFieldStateController
	Adding the FieldStateController Control
	Adding the MultiFieldStateController Control
	Properties of FieldStateController And MultiFieldStateController
	Invoke the Change Properties
	Controls To Change Properties
	Attributes To Change Properties
	Update Validators Properties
	When to Use the Control Properties
	Behavior Properties

	FSCOnCommand and MultiFSCOnCommand Controls
	Features
	Using the FSCOnCommand Controls
	Controls that run the FSCOnCommand control
	Controls To Change
	Attribute Values To Change
	Updating Validators
	Changing Visibility on a Complex Control
	Selectively Running the Control

	Example: FSCOnCommand
	Example: MultiFSCOnCommand
	Adding the FSCOnCommand Control
	Adding the MultiFSCOnCommand Control
	Properties of FSCOnCommand And MultiFSCOnCommand
	Invoke the Change Properties
	Controls To Change Properties
	Attributes To Change Properties
	Update Validators Properties
	When To Use The Control Properties
	Behavior Properties

	CalculationController
	Features
	Using the CalculationController
	Creating the Expression: The CalcItem classes
	Displaying The Result
	Using the Result in Validators and Conditions
	Using the Result in Your Server-Side Code
	JavaScript: Running CalculationControllers On Demand

	Adding the CalculationController Control
	Properties on CalculationController
	Calculating The Value Properties
	Showing The Value Properties
	When to Use the Control Properties
	Behavior Properties

	Properties on CalcItem Classes
	Properties Common To All CalcItem Classes
	Properties for the PeterBlum.DES.Web.WebControls.NumericTextBoxCalcItem Class
	Properties for the PeterBlum.DES.Web.WebControls.ListConstantsCalcItem Class
	Properties for the PeterBlum.DES.Web.WebControls.CheckStateCalcItem Class
	Properties for the PeterBlum.DES.Web.WebControls.ConstantCalcItem Class
	Properties for the PeterBlum.DES.Web.WebControls.ParenthesisCalcItem Class
	Properties for the PeterBlum.DES.Web.WebControls.ConditionCalcItem Class
	Properties for the PeterBlum.DES.Web.WebControls.CalcControllerCalcItem Class
	Properties for the PeterBlum.DES.Web.WebControls.TotalingCalcItem Class
	Properties for the PeterBlum.DES.BLD.DataFieldTotalingCalcItem Class
	Adding Custom Code to a CalcItem

	Interactive Hints
	Features
	When using Labels
	When using PopupViews
	Other ways to display Hints
	Interactively Customizing the Hint Text

	Using Interactive Hints
	Displaying Hints: The PeterBlum.DES.Web.WebControls.HintFormatter Class
	Page-Level Hint Settings: The PeterBlum.DES.Globals.WebFormDirector.HintManager Property
	Adding HintFormatters to the SharedHintFormatters Property
	Defining PopupViews
	Using PopupViews
	Defining Hints shown on the Page
	Using Hints shown on the Page
	Customize the Text of the Hint: The Text Function
	Javascript functions: Show and Hide the Hint On Demand

	Adding a Hint to any Control Programmatically:PeterBlum.DES.Globals.WebFormDirector.AddHintToControl Method
	Properties for the PeterBlum.DES.Web.WebControls.HintFormatter Class
	Properties on the PeterBlum.DES.Globals.WebFormDirector.HintManager Property
	Properties for the PeterBlum.DES.Web.WebControls.HintPopupView Class
	Overall Appearance Properties
	Header Properties
	Body Properties
	Footer Properties
	Callout Properties
	Positioning Properties
	Other Properties

	Enhanced ToolTips
	Features
	Using Enhanced ToolTips
	HintManager.AddToolTipPopupViewToControl() method

	TextCounter Control
	Features
	Using the TextCounter Control
	Connecting To a TextBox
	Establishing the Limits
	Setting the Text and Style Sheets

	Adding a TextCounter Control
	Properties of the TextCounter Control
	TextBox Properties
	Message Properties
	Appearance Properties
	Behavior Properties

	Context Menu and DropDownMenu Controls
	Features
	Using the Context Menu
	Overall Appearance
	Menu Commands: PeterBlum.DES.Web.WebControls.CommandMenuItem class
	Menu Separators: PeterBlum.DES.Web.WebControls.SeparatorMenuItem class
	Hint Rows: PeterBlum.DES.Web.WebControls.HintMenuItem class
	Popup Controls: PeterBlum.DES.Web.WebControls.MenuActivator class

	Using the DropDownMenu control
	Customizing the Toggle button

	Adding a ContextMenu
	Complete Example
	Adding a DropDownMenu
	Complete Example
	Properties of the ContextMenu
	Menu Structure Properties
	Menu Item Appearance Properties
	Overall Appearance Properties
	Popup Behavior Properties
	Behavior Properties
	Popup Location Properties

	Properties of the DropDownMenu
	Toggle Control Properties
	Popup Panel Properties
	Popup Behavior Properties
	Behavior Properties

	Enhanced Buttons
	Features
	Using the Enhanced Buttons
	Adding an Enhanced Button
	Properties on Enhanced Buttons
	Behavior Properties
	ChangeMonitor Properties
	Validation Properties
	Hint and ToolTip Properties
	Appearance Properties

	Programmatically Adding These Features to Non-DES Buttons
	The PeterBlum.DES.SubmitBehavior Class

	ChangeMonitor
	Features
	Using the ChangeMonitor
	The ChangeMonitor Property
	Changing the State of Buttons
	Making Data Entry Controls Notify Changes
	Using the FieldStateController
	Using your own JavaScript Code
	Validation Group and ChangeMonitor Groups

	Properties of the PeterBlum.DES.Globals.WebFormDirector.ChangeMonitor
	ChangeMonitor Server Side Methods
	ChangeMonitor JavaScript Functions

	Direct Keystrokes to Click Buttons
	Using the NativeControlExtender
	Using the RegisterKeyClicksControl() Method
	PeterBlum.DES.Globals.WebFormDirector.RegisterKeyClicksControl Method

	Custom Submit Function
	Using The Custom Submit Function
	Page-Level Properties

	Additional Topics for Using These Controls
	Page Level Properties and Methods
	Properties on PeterBlum.DES.Globals.WebFormDirector
	Validation Properties

	JavaScript Support Functions
	General Utilities

	Adding Your JavaScript to the Page
	Embedding the ClientID into your Script
	Debugging Your JavaScript

	The Condition classes
	Evaluating Textboxes and other controls with textual values
	Evaluating Listboxes and other controls with index values
	Evaluating checkboxes, radiobuttons, and other controls
	Evaluating non-data value states of controls

	Troubleshooting
	Technical Support and Other Assistance
	Troubleshooting Section of this Guide
	Developer’s Kit
	PeterBlum.Com Forums
	Getting Product Updates
	Technical Support

	Word Bookmarks
	FSC_Overview
	FSC_Using
	RunFunctionName
	FSC_Adding
	MFSC_Adding
	FSC_Properties
	FSC_Condition
	FSC_ExtraControlsToRunThisAction
	FSC_ControlIDToChange
	MFSC_ControlConnections
	FSC_ConditionTrue
	FSC_ConditionFalse
	FSC_InvisiblePreservesSpace
	FSC_ValidateChangedControls
	FSC_UseValidationGroup
	FSC_ValidationGroup
	FSC_Enabler
	FSC_RunOnPageLoad
	FSC_UpdateWhileEditing
	FSCOnCmd_Overview
	FSCOnCmd_Using
	FSCOnCmd_Adding
	MFSCOnCmd_Adding
	FSCOnCmd_Properties
	FSCON_ControlIDToRunThisAction
	FSCON_ExtraControlsToRunThisAction
	FSCON_ControlIDToChange
	FSCON_ControlConnections
	FSCON_VisibleState
	FSCON_EnabledState
	FSCON_ReadOnly
	FSCON_CssClass
	FSCON_FieldValue
	FSCON_InnerHTML
	FSCON_URL
	FSCON_Checked
	FSCON_Other
	FSCON_InvisiblePreservesSpace
	FSCON_ValidateChangedControls
	FSCON_UseValidationGroup
	FSCON_ValidationGroup
	FSCON_Enabler
	Calc_Using
	CalcItemTotalling_Overview
	CalcItemDataFieldTotalling_Overview
	Calc_Adding
	Calc_Properties
	Calc_Expression
	Calc_RoundMode
	Calc_Value
	Calc_ValueText
	Calc_IsValid
	Calc_ShowValueControlID
	Calc_InvalidValueLabel
	Calc_InvalidValueCssClass
	Calc_DecimalPlaces
	Calc_LabelFormatThousandsSep
	Calc_LabelFormatCurrencySymbol
	Calc_LabelToken
	Calc_AutoShowValue
	Calc_ShowValueMethod
	Calc_Enabler
	Calc_ValidateOnCalc
	Calc_ExtraControlsToRunThisAction
	CalcItem_Operator
	CalcItem_CustomCalcFunctionName
	CalcItem_TextBoxControlID
	CalcItem_InvalidIsZero
	CalcItem_BlankIsZero
	CalcItemList_Properties
	CalcItem_ListControlID
	CalcItem_ConstantWhenNoMatch
	CalcItem_ErrorWhenNoMatch
	CalcItem_ConstantsForSelectedIndexes
	CalcItem_CheckStateControlID
	CalcItem_CheckStateIndex
	CalcItem_ValueWhenChecked
	CalcItem_ValueWhenunchecked
	CalcItemConst_Properties
	CalcItem_Constant
	CalcItemParen_Properties
	CalcItem_Expression
	CalcItemCond_Properties
	CalcItem_Condition
	CalcItem_ExpressionWhenTrue
	CalcItem_ExpressionWhenFalse
	CalcItem_CannotEvalMode
	CalcItem_InvalidWhenFalse
	CalcItemCalcCont_Properties
	CalcItem_ControlID
	CalcItemCC_InvalidIsZero
	CalcItemTotalling_Properties
	CalcItemTotalling_GrandTotal
	CalcItemTotalling_ListControlID
	CalcItemTotalling_ControlIDInRow
	CalcItemTotalling_InvalidIsZero
	CalcItemTotalling_GetColumnControl
	CalcItemDataFieldTotalling_Properties
	Hints_Using
	AddingSharedHintFormatters
	PopupView_ViewCmd
	PopupView_EditCmd
	PopupView_AddCmd
	PopupView_RenameCmd
	PopupView_DeleteCmd
	Hints_AddingPopupViews
	Hints_AddingOnPage
	HintFormatter_Properties
	HintFormatter_PopupAction
	HintManager_Properties
	HintManager_SharedHintFormatters
	HintManager_HintsShowErrors
	HintManager_ToolTipsAsHints
	HintManager_EnableToolTipsUsePopupViews
	HintPopupView_Properties
	PopupView_HelpBehavior
	PopupToolTips_Using
	TextCounter_Using
	TextCounter_Adding
	TextCounter_Properties
	ContextMenu_Overview
	ContextMenu_Using
	ContextMenu_OverallAppearance
	ContextMenu_MenuCommandRows
	ContextMenu_MenuSeparatorRows
	ContextMenu_MenuHintRows
	ContextMenu_MenuActivator
	DropDownMenu_Using
	ContextMenu_Adding
	DropDownMenu_Adding
	ContextMenu_Properties
	CM_ProcessCommandFunctionName
	CM_EnableItemsFunctionName
	ContextMenu_MenuSelected
	DropDownMenu_Properties
	PUC_SelectionChangeCloses
	Buttons_Using
	Buttons_Adding
	Buttons_Properties
	Button_ConfirmMessage
	ChangeMonitorOnButton_Properties
	ChangeMonitor_Using
	ChangeMonitor_RegisterForChanges
	ChangeMonitor_Properties
	DES_CMonSet
	DESPage
	CultureInfoProperty
	JavaScriptEnabled
	DESPage_EnableButtonImageEffects
	DESPage_ConfirmMessage
	DESPage_SubmitOrder
	DES_GetById
	DES_ParseInt
	DES_Trunc
	DES_SetInnerHTML
	DES_RERpl
	Conditions
	DevelopersKit
	TableOfContents

